• 제목/요약/키워드: Single-pass intestinal perfusion

검색결과 7건 처리시간 0.018초

베나제프릴의 장관막 투과도와 흡수 클리어런스에 미치는 아목시실린의 영향 (Effect of Amoxicillin on the Intestinal Membrane Permeability and Absorption Clearance of Benazepril)

  • 주은희;김영만;고형석;이용복;나한광
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권1호
    • /
    • pp.25-33
    • /
    • 1998
  • Intestinal absorption of ${\beta}-lactam$ antibiotics and angiotensin converting enzyme(ACE) inhibitors has been shown to use the carrier-mediated transport system. In vitro experiments have established that the efficacy of uptake by enterocytes depends on an inwardly directed proton gradient. It was suggested that benazepril was mediated by tripeptide transport system and that amoxicillin was transported by dipeptide transport carrier. The aim of this study is to assess the influence of amoxicillin on the intestinal absorption of benazepril using in vitro diffusion chamber and in situ single pass perfusion technique in the rat in order to elucidate whether the above transport systems are competitive or not. We obtained the gastrointestinal pemeability coefficient of amoxicillin, benazepril and both of them using in vitro diffusion chamber. And also the gastrointestinal absorption clearance of amoxicillin, benazepril and both of them using in situ single-pass perfusion method at steady state were calculated. Amoxicillin and benazepril were analyzed by HPLC. The results by the use of diffusion chamber in vitro indicated that the apparent intestinal permeability coefficient of benazepril was significantly(p<0.01) decreased by amoxicillin(45.2%) and vice versa significantly(p<0.01) decreased(89.1%). The results by the in situ gastrointestinal single-pass perfusion method indicated that the intestinal absorption clearance of benazepril was significantly(p<0.05) decreased by amoxicillin (40.2%) and vice versa significantly(p<0.05) decreased(54.8%). These results might suggest that they share the same peptide carrier pathway for oral absorption.

  • PDF

일회통과 관류실험시 물의 수송 : 관류액의 종류와 삼투압의 영향 (Water Transport during the Single-pass Perfusion Experiments : Effects of Some Perfusates and Their Osmolality)

  • 이정화;이현주;용철순;오두만
    • 약학회지
    • /
    • 제39권4호
    • /
    • pp.411-416
    • /
    • 1995
  • The single-pass perfusion experiments were performed in anesthetized rats to investigate the effects of perfusates and their osmolality on the water transport and to determine the correlation between the extent of water transport and the volume change of perfusate. Phenol red was used as a nonabsorbable marker. In normal rats, when perfused at a flow rate of 0.5 ml/min, 2-(N-rnorpholino) ethanesulfonic acid (MES) and S$\phi$rensen's phosphate buffers showed minimal net water transport as 0.125 and 0.173 %/cm of intestinal length, respectively. Hypotonic perfusate of 200 mOsm/kg of water and hypertonic perfusate of 400 mOsm/kg of water generated significant water transport compared with isotonic perfusate of 300 mOsm/kg of water. There was a linear correlation between the extent of water transport and the volume change of perfusate, suggesting that the volume change can be used as a measure of water transport.

  • PDF

Impact of Micellar Vehicles on in situ Intestinal Absorption Properties of Beta-Lapachone in Rats

  • Jang, Soung Baek;Kim, Dongju;Kim, Seong Yeon;Park, Changhee;Jeong, Ji Hoon;Kuh, Hyo-Jeong;Lee, Jaehwi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.9-13
    • /
    • 2013
  • The aim of the present study was to examine the effect of micellar systems on the absorption of beta-lapachone (b-lap) through different intestinal segments using a single-pass rat intestinal perfusion technique. B-lap was solubilized in mixed micelles composed of phosphatidylcholine and sodium deoxycholate, and in sodium lauryl sulfate (SLS)-based conventional micelles. Both mixed micelles and SLS micelles improved the in situ permeability of b-lap in all intestinal segments tested although the mixed micellar formulation was more effective in increasing the intestinal absorption of b-lap. The permeability of b-lap was greatest in the large intestinal segments. Compared with SLS micelles, the effective permeability coefficient values measured with mixed micelles were 5- to 23-fold higher depending on the intestinal segment. Our data suggest that b-lap should be delivered to the large intestine using a mixed micellar system for improved absorption.

CORRELATION BETWEEN RAT, DOG AND HAMAN SMALL INTESTINAL PERMEABILITIES OF RANITIDINE

  • Kim, Ok-Nam;Gordon L. Amidon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.272-272
    • /
    • 1996
  • While ranitidine is well known to be absorbed rapidly, the underlying cause of variable bioavailability in intra- and inter-subjects has not been clarified yet. Intestinal permeability is a key controlling factor for oral absorption of highly soluble drugs, In the present study, intestinal ferfusions have been conducted to determine the intestinal permeabilities(Peffs) of ranitidine in the rats, dogs and humans and compared to the estimated fractions of dose absorbed (FAs) in humans. A new in vivo methodology, using a regional segmental perfusion technique, has been used in the dogs and humans. In situ single-pass perfusion experiments have been performed in the rats. In the dog and human studies, perfusion experiments have been conducted on two periods to determine the intrasubject variability, There was low significant intrasubject variation as compared to intersubject variation. The Peffs of ranitidine were 33%, 51%, and 45% inthe rats, dogs and humans, respectively. The FAs were approximately the same for all three species models, suggesting rats and dogs are good animal models for estimating the oral absorption of ranitidine in humans. In addition, the estimated extent of absorption of this drug is consistent with the average bioavailability, indicating that ranitidine has permeability-limited absorption characteristics. Supported by FDA Grant FD01462.

  • PDF

Sea Tangle Supplementation Alters Intestinal Morphology in Streptozotocin-induced Diabetic Rats and Lowers Glucose Absorption

  • Lee, Kyeung-Soon;Seo, Jung-Sook;Choi, Young-Sun
    • Food Science and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.879-883
    • /
    • 2007
  • This study examined whether dietary supplementation with sea tangle alters the intestinal morphology of streptozotocin-induced diabetic rats and affects the glucose absorption rate. Forty male Sprague-Dawley rats were divided into 2 groups and fed either a control (AIN76-based) diet or a sea tangle-supplemented diet. After 3 weeks, 10 rats in each group received an intramuscular injection of streptozotocin (45 mg/kg BW), and feeding was continued for 3 additional weeks. Dietary supplementation with sea tangle resulted in a lower fasting plasma glucose level compared with the control diet in diabetic rats. Scanning electron micrographs revealed serious damage to the jejunal villi of diabetic rats fed the control diet, whereas supplementation with sea tangle alleviated the damage. In a separate experiment, 20 male Sprague-Dawley rats were divided into 2 groups and fed either a control diet or a sea tangle-supplemented diet for 5 weeks, and fasted rats were subjected to in situ single-pass perfusion. The glucose absorption rate determined in the absence of digesta was decreased by 34% in the jejunum of rats fed a sea tangle diet compared with those fed a control diet. In conclusion, sea tangle supplementation lowered glucose absorption rate, altered intestinal morphology, and appeared to protect villi from damage caused by diabetes mellitus.

Prediction of drug-Drug Interaction During Oral Absorption of Carrier-Mediated Compounds in Humans

  • Oh, Doo-Man;Gordon L. Amidon
    • Archives of Pharmacal Research
    • /
    • 제17권5호
    • /
    • pp.364-370
    • /
    • 1994
  • A microscopic mass balance approach has been developed to estimate the extent and rate of absorption for camier-mediated comounds. For the case competitive inhibition in the presence of an inhibitor which shares the same camier, the fraction dose absorbed (F) and absorption rate constant ($K_a$) of a drug can be calculated from its concentration profile in the intestinal lumen. Absorption parameters obtained by single-pass perfusion experiments were used in the simultaion of the absorption of some aminopenicilins. Predicted fractions dose absorbed and absorption rate constants of ampicilin and amoxicilin were significantly reduced in the presence of a 6-times higher molar dose of cyclacilin. The drug-drug interactions on the competitive absroption of camier-mediated compounds were determined with regard to F and $K_a$. Predicted decreases in F for some aminopenicilins corrlated well with decrease in the urinary recovery in humans reported in the literature. Predicted decrease in the mean absorption rate constant ($\barK_a$) explain the delays in the time of peak plasma concentration ($T_{max}$) reported in humans.

  • PDF

이트라코나졸의 랫트 소장으로부터의 흡수 (Absorption of Itraconazole from Rat Small Intestine)

  • 김영화;이용석;박기배;이광표
    • Journal of Pharmaceutical Investigation
    • /
    • 제21권4호
    • /
    • pp.215-222
    • /
    • 1991
  • The absorption characteristics of itraconazole, which is an antifungal agent, from intestinal segments in the anesthetized rat i1l situ were investigated in order to design an effective oral drug delivery system. The pH-solubility profile of itraconazole, the rate and extent of absorption of itraconazole, the optimal absorption site(s) of itraconazole and the absorption enhancing effect of sodium cholate on itraconazole were examined in the present study. In situ single-pass perfusion method and recirculating perfusion technique using duodenum(D), jejunum(J) and ileum(I) were employed for the calculation of apparent permeability(Pe) and apparent first-order rate constant(Kobs). respectively. The results of this study were as follows; (1) Itraconazole showed appreciable aqueous solubility only at pH values of below 2.0. (2) pe(cm/sec) decreased in the following order: $D(10.24{\pm}1.78{\times}10^{-4})>J(8.86{\pm}0.79{\times}10^{-4})>I(3.78{\pm}0.13 X 10^{-4})$. (3) $Kobs(min^{-1})$ decreased in the following order: $J(17.12{\pm}3.19{\times}10^{-3})>D(13.37{\pm}0.6{\times}10^{-3})>I(11.05{\pm}0.91{\times}10^{-3})$. (4) The solubility of itraconazole markedly increased with the increase of the concentration of sodium cholate. (5) The addition of 10 mM sodium cholate significantly increased the apparent first-order rate constant of itraconazole in the ileum by a factor of 6.8.

  • PDF