• Title/Summary/Keyword: Sophora tonkinensis

Search Result 6, Processing Time 0.024 seconds

A Study on a Morphological Identification of Sophora tonkinensis, Menispermum dauricum and Indigofera kirilowii (광두근(廣豆根), 북두근(北豆根) 및 화목람(花木藍)의 형태(形態) 감별에 관한 연구)

  • Lee, Chung-Heon;Han, Sin-Hee;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.115-119
    • /
    • 2007
  • Objectives : A morphological classification among Sophora tonkinensis, Menispermum dauricum and Indigofera kirilowii was made through microscopic observation. Method : The slice of the tested material made by paraffin section technique was colored with Safranine Malachite Green contrast methods, and then observed and photographed by olymphus-BHT. Result : 1. The cross-sections of Sophora tonkinensis and Indigofera kirilowii have piths, but Menispermum dauricum does not have any. 2. The lateral parts of Sophora tonkinensis cortex include the square crystal of calcium oxalate, but Indigofera kirilowii does not. Conclusion : The number of piths and the presence of the square crystal of calcium oxalate can be used to distinguished Sophora tonkinensis from Indigofera kirilowii.

  • PDF

Inhibition of Adipocyte Differentiation through G1 Arrest by Extract of Sophora tonkinensis Gapnep in 3T3-L1 Preadipocytes (산두근 추출물의 세포주기 정지를 통한 3T3-L1 지방전구세포의 분화 억제)

  • Jeong, Hyun-Young;Hyun, Sook-Kyung;Choi, Yung-Hyun;Kim, Byung-Woo;Kwon, Hyun-Ju
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1346-1353
    • /
    • 2011
  • Sophora tonkinensis Gapnep has been used as a traditional herbal medicine in oriental regions since ancient times. In this study, the effect and mechanism of the MeOH extract of Sophora tonkinensis Gapnep (STME) on adipocite differentiation and adipogenesis in 3T3-L1 preadipocites were investigated. Treatment with STME in the concentration range of 0-200 ${\mu}g$/ml significantly inhibited the differentiation of 3T3-L1 preadipocites in a dose-dependent manner, as determined by a decrease in intracellular lipid droplets and lipid contents measured by Oil Red O staining. In association with the inhibitory effect of lipid accumulation, the expressions of the proteins concerned with adipogenesis in 3T3-L1 preadipocites were also investigated. Treatment with STME reduced the expressions of peroxisome proliferator-activated receptor ${\gamma}$ (PPAR${\gamma}$), cytidine-cytidine-adenosine-adenosine-thymine (CCAAT)/enhancer-binding proteins ${\alpha}$ and ${\beta}$ (C/EBP${\alpha}$ and C/EBP${\beta}$) and sterol regulatory element binding protein (SREBP), which are adipocyte specific markers. In flow cytometry analysis, the inhibitory effect of differentiation was caused by G1 arrest and following mitotic clonal expansion cease. Therefore, we also investigated the alteration of G1 phase arrest-related proteins. As a result, the expression of p21 protein was significantly increased, while the expressions of Cdk2, E2F-1 and phospho-Rb were reduced in a dose-dependent manner in STME treated 3T3-L1 cells. According to these results, STME might inhibit differentiation through G1 arrest in 3T3-L1 preadipocytes adipogenesis, and further studies, which are in progress, have to be completed to identify the active compounds.

Antiproliferative Effect of RST Associated with the Inhibition of Cyclooxygenase-2 Expression and Prostaglandin E2 Release in Human Lung Carcinoma Cells (산두근 추출물이 인체폐암세포의 COX-2 발현 및 PGE2 생성에 미치는 영향)

  • Kim, Kang-Tae;Eom, Hyun-Sup;Chi, Gyoo-Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.907-915
    • /
    • 2007
  • In this study the effect of water extract of Sophora tonkinensis Gapnep (RST) was investigated on the growth of human lung carcinoma A549 cells. Exposure of A549 cells to RST resulted in the growth inhibition in a dose-dependent manner as measured by MTT assay. The antiproliferative effect by RST treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. RST treatment did not induce the cell cycle arrest and the levels of tumor suppressor p53 as well as cyclin-dependent kinase inhibitor p21(WAF1/CIP1). It was found that RST treatment decreased the levels of cyclooxygenase (COX) -2 mRNA and protein expression without significant changes in the expression of COX-1 and inducible nitric oxide synthase (iNOS), which was correlated with a decrease in prostaglandin E2 (PGE2) synthesis. RST treatment also slightly inhibited the levels of human telomerase reverse transcriptase (hTERT) mRNA and protein expression, and the activity of telomerase. Taken together, these findings suggested that RST-induced inhibition of human lung carcinoma A549 cell growth was aoosciated with the inhibition of COX-2 expression and PGE2 production. These results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of RST.

Quality Change in Plug Seedlings of Three Indigenous Medicinal Plants after Short-term Cold Storage

  • Oh, Hye Jin;Park, Ji Eun;Park, Yoo Gyeong;Jeong, Byoung Ryong
    • Korean Journal of Plant Resources
    • /
    • v.26 no.6
    • /
    • pp.701-708
    • /
    • 2013
  • To test the quality change of seedlings of three domestic medicinal plants raised in plug trays, a short term storage experiment was conducted. Seedlings were kept in growth chambers for two weeks at 4 or $8^{\circ}C$ temperature combined with 0 or $5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD. Quality of glasshouse-raised seedlings was assessed after two weeks of cold storage in the growth chamber and one week of acclimation in the greenhouse. After two weeks of storage in the growth chamber of Perilla frutescens var. acuta Kudo, plant height was the greatest in the treatment $8^{\circ}C$ combined with $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD. Internode length of P. frutescens var. acuta Kudo was the greatest in the treatment of $4^{\circ}C$ combined with $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD. After one week of acclimatization in a glasshouse, the growth and development, such as plant height, internode length and leaf size, were greater in the $8^{\circ}C$ combined with $5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD than in the other treatments. After two weeks of storage in the growth chamber of Sophora tonkinensis, plant height increased more in the treatment of $4^{\circ}C$ than $8^{\circ}C$. After one week of acclimatization in a glasshouse, number of leaves did not change in the treatment of $4^{\circ}C$ combined with $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD, but it increased in the other treatments. Leaf width increased more under the dark than light condition. Leaf length did not observably change in any treatments. After two weeks of storage in the growth chamber, plant height of Angelica gigas Nakai was the greatest in the treatment of $8^{\circ}C$. Number of leaves was the greatest in the treatment of $8^{\circ}C$. Leaf growth was greater under dark than light condition. These results suggested that optimal storage environment was $8^{\circ}C$ combined with $5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD for P. frutescens var. acuta Kudo, and $4^{\circ}C$ combined with $0{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD for S. tonkinensis and A. gigas Nakai. Hence, proper combination of temperature and PPFD were necessary for better storage, and acclimatization and growth, thereafter, of the plug seedlings of theses plant species.

Effect of Cell Size on Growth and Development of Plug Seedlings of Three Indigenous Medicinal Plants (플러그 셀 크기가 세 가지 자생 약용식물 묘 생육에 미치는 영향)

  • Oh, Hye Jin;Park, Yoo Gyeong;Park, Ji Eun;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.71-76
    • /
    • 2014
  • There have not been many studies conducted on the seedling production, especially in plug trays, of traditional medicinal plant species. In an effort to establish guide lines for seedling production, this study investigated the effect of plug cell size on the growth and development of plug seedling of three medicinal plant species. Seeds were sown in either 128, 200, or 288-cell plug trays, containing a commercial medium. Growth and development of individual seedling was generally promoted with increasing size of a plug cell in all of the three species. The greatest biomass of the seedlings gained in a plug tray was obtained in the 288-cell trays in Perilla frutescens var. acuta Kudo and Sophora tonkinensis, and the 200-cell trays in Angelica gigas Nakai. Overall growth and development of the shoot and root of a single seedling of Perilla frutescens var. acuta Kudo, except total chlorophyll and anthocyanin contents, was the greatest in the 128-cell tray. However, length of the longest root, length, width and area of the leaf, internode length, root fresh weight, and root ball formation in the 200- and 288-cell trays were not significantly different each other. In Sophora tonkinensis, although length of the longest root, stem diameter, leaf width, leaf area, shoot fresh weight, and root ball formation were not significantly different among the treatments, length of the longest root and root ball formation of a single seedling were the greatest in the 128-cell tray. Overall shoot and root growth, except total chlorophyll content, of a single seedling of Angelica gigas Nakai was the greatest in the 128-cell tray. Based on the total biomass, it is concluded that 288-cell trays are recommended for production of plug seedlings of medicinal plant species P. frutescens var. acuta Kudo and S. tonkinensis. In A. gigas Nakai, it would be more economical to use the 200-cell trays than 128-cell trays due to total biomass.

Scavenging Capacities of DPPH and ABTS Free Radicals and Anti-inflammatory Activities of Ethanol Extracts and their Fractions from Sophora tonkinensis

  • Eun Sun Moon;Ji Yoon Lee;Seongdae Kim;Chang Won Choi
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.46-46
    • /
    • 2021
  • The first purpose of this study was to evaluate the scavenging capacity (SC) of DPPH and ABTS free radicals for ethanol extract (STR-E) and its active fractions from Sophora tonkinensis root (STR). Four different fractions from STR-E were prepared by using different types of solvents such as chloroform (STR-E-C), ethyl acetate (STR-E-EA), n-butanol (STR-E-B), and water (STR-E-W). STR-E-C showed the highest value of total phenolic content, while STR-E showed the highest value of total flavonoid and terpenoid content. In STR-E and its four fractions, STR-E-EA showed the strongest SC with the lowest SC50 values of the DPPH radicals and ABTS radicals. The second purpose of this study was to evaluate anti-inflammatory activity in the lipopolysaccharide (LPS)-induced RAW 264.7 macrophages treated with STR-E, STR-E-C, and STR-E-EA, respectively. No cytotoxic effect to RAW 264.7 cells was observed at 20 ~ 25 ㎍/ml of STR-E, 10 ㎍/ml of STR-E-C, and 5 ㎍/ml of the STR-E-EA, presenting cell viability values close to that of the untreated control (100%). STR-E, STR-E-C, and STR-E-EA significantly suppressed the LPS-induced nitric oxide (NO) in a dose-dependent manner. Results of reverse-transcription (RT)-qPCR analysis showed that the peak mRNA levels of IL-1β, TNF-α, iNOS, IL-6, and IL-10 were observed in the LPS-stimulated macrophages at 4 h, 2 h, 12 h, 12 h, and 12 h, respectively. The peak mRNA levels of IL-1β, TNF-α, iNOS, and IL-6 were significantly reduced in the LPS-stimulated macrophages co-treated with 20 ㎍/ml and 25 ㎍/ml of STR-E, respectively. In the case of IL-10, its peak mRNA level slightly increased without statistical significance. Compared with the LPS-stimulated macrophages, the peak mRNA levels of IL-1β, TNF-α, iNOS, and IL-6 reduced in the LPS-stimulated macrophages co-treated with 10 ㎍/ml and 20 ㎍/ml of STR-E-C, respectively. In contrast, the peak mRNA level of IL-10 significantly increased at 8 h. Compared with the LPS-stimulated macrophages, the peak mRNA levels of IL-1β, TNF-α, iNOS, and IL-6 reduced in the LPS-stimulated macrophages co-treated with 5 ㎍/ml and 10 ㎍/ml of STR-E-EA, respectively. In contrast, the peak mRNA level of IL-10 increased at 4 h. Taken together, our data indicated that STR-E, STR-E-C, and STR-E-EA activate macrophages to secrete both pro-inflammatory and anti-inflammatory cytokines.

  • PDF