• Title/Summary/Keyword: Stanley-Reisner ideal

Search Result 2, Processing Time 0.015 seconds

SQUAREFREE ZERO-DIVISOR GRAPHS OF STANLEY-REISNER RINGS

  • Nikseresht, Ashkan
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1381-1388
    • /
    • 2018
  • Let ${\Delta}$ be a simplicial complex, $I_{\Delta}$ its Stanley-Reisner ideal and $K[{\Delta}]$ its Stanley-Reisner ring over a field K. Assume that ${\Gamma}(R)$ denotes the zero-divisor graph of a commutative ring R. Here, first we present a condition on two reduced Noetherian rings R and R', equivalent to ${\Gamma}(R){\cong}{\Gamma}(R{^{\prime}})$. In particular, we show that ${\Gamma}(K[{\Delta}]){\cong}{\Gamma}(K^{\prime}[{\Delta}^{\prime}])$ if and only if ${\mid}Ass(I_{\Delta}){\mid}={\mid}Ass(I_{{{\Delta}^{\prime}}}){\mid}$ and either ${\mid}K{\mid}$, ${\mid}K^{\prime}{\mid}{\leq}{\aleph}_0$ or ${\mid}K{\mid}={\mid}K^{\prime}{\mid}$. This shows that ${\Gamma}(K[{\Delta}])$ contains little information about $K[{\Delta}]$. Then, we define the squarefree zero-divisor graph of $K[{\Delta}]$, denoted by ${\Gamma}_{sf}(K[{\Delta}])$, and prove that ${\Gamma}_{sf}(K[{\Delta}){\cong}{\Gamma}_{sf}(K[{\Delta}^{\prime}])$ if and only if $K[{\Delta}]{\cong}K[{\Delta}^{\prime}]$. Moreover, we show how to find dim $K[{\Delta}]$ and ${\mid}Ass(K[{\Delta}]){\mid}$ from ${\Gamma}_{sf}(K[{\Delta}])$.

ON THE (n, d)th f-IDEALS

  • GUO, JIN;WU, TONGSUO
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.685-697
    • /
    • 2015
  • For a field K, a square-free monomial ideal I of K[$x_1$, . . ., $x_n$] is called an f-ideal, if both its facet complex and Stanley-Reisner complex have the same f-vector. Furthermore, for an f-ideal I, if all monomials in the minimal generating set G(I) have the same degree d, then I is called an $(n, d)^{th}$ f-ideal. In this paper, we prove the existence of $(n, d)^{th}$ f-ideal for $d{\geq}2$ and $n{\geq}d+2$, and we also give some algorithms to construct $(n, d)^{th}$ f-ideals.