• 제목/요약/키워드: Staurosporine

검색결과 95건 처리시간 0.023초

Staurosporine과 Genistein이 C5a 또는 PMA에 의하여 활성화된 호중구에서의 Superoxide와 HOCl 생성에 나타내는 영향 (Effects of Staurosporine and Genistein on Superoxide and HOCl Production in C5a- or PMA-activated Neutrophils)

  • 윤영철;강희정;신용규;이정수
    • 대한약리학회지
    • /
    • 제31권1호
    • /
    • pp.115-122
    • /
    • 1995
  • C5a 또는 PMA에 의하여 활성화된 호중구에서의 superoxide와 HOCl 생성에 나타내는 staurosporine, genistein과 pertussis toxin의 효과를 관찰하였다. C5a에 의한 superoxide과 $H_2O_2$의 생성은 staurosporine, genistein과 pertussis toxin에 의하여 억제되었다. PMA의 자극효과는 staurosporine에 의하여 억제되었으나 pertussis toxin에 의하여 영향을 받지 않았으며, 한편 이는 genistein에 의하여 더 촉진되었다. Staurosporine, genistein은 sodium fluoride에 의한 superoxide 생성을 억제 하였으나 pertussis toxin은 영향을 나타내지 않았다. PMA에 의한 $H_2O_2$의 생성은 staurosporine에 의하여 억제되었으나 pertussis toxin은 영향을 나타내지 않았다. Genistein은 PMA에 의한 $H_2O_2$의 생성에 자극효과를 나타내지 않았다. Staurosporine과 pertussis toxin은 C5a 또는 PMA에 의한 HOCl 생성을 억제하였으나, 이에 반하여 genistein은 자극하였다. C5a와 PMA에 의한 myeloperoxidase 유리는 genistein에 의하여 억제되었나, pertussis toxin의 효과는 나타나지 않았다. Staurosporine은 유리에 대한 PMA의 자극효과에 영향을 주지 않았다. Myeloperoxidase 활성은 genistein에 의하여 현저하게 증가되었으나 staurosporine과 pertussis toxin의 영향은 받지 않았다. 이상의 결과는 호중구의 respiratory burst가 protein kinase C와 protein tyrosine kinase에 의하여 조절된다고 제시한다. Protein kinase C의 직접적인 자극에 따른 superoxide 생성은 protein tyrosine kinase의 영향을 역으로 받을 것으로 추정된다. Genistein은 아마도 myeloperoxidase를 활성화하여 HOCl 생성을 촉진할 것으로 시사된다.

  • PDF

Staurosporine Induces ROS-Mediated Process Formation in Human Gingival Fibroblasts and Rat Cortical Astrocytes

  • Lee, Han Gil;Kim, Du Sik;Moon, Seong Ah;Kang, Jeong Wan;Seo, Jeong Taeg
    • International Journal of Oral Biology
    • /
    • 제40권1호
    • /
    • pp.27-33
    • /
    • 2015
  • In the present study, we investigated the effect of staurosporine on the formation of cellular processes in human gingival fibroblasts and rat astrocytes. Staurosporine caused a rapid induction of process formation in human gingival fibroblasts and rat astrocytes in a concentration dependent manner. The process formation of human gingival fibroblasts and rat astrocytes was prevented by the pretreatment with N-acetylcysteine, suggesting that staurosporine-induced ROS production was responsible for the process formation. Colchicine, a microtubule depolymerizing agent, inhibited the staurosporine-induced process formation, whereas cytochalasin D, an actin filament breakdown agent, failed to suppress the formation of cellular processes. This result indicated that polymerization of microtubule, and not actin filament, was responsible for the formation of cellular processes induced by staurosporine. In support of this hypothesis, Western blot analysis was conducted using anti-tubulin antibody, and the results showed that the amount of polymerized microtubule was increased by the treatment with staurosporine while that of depolymerized beta-tubulin in soluble fraction was decreased. These results indicate that staurosporine induces ROS-mediated, microtubule-dependent formation of cellular processes in human gingival fibroblasts and rat astrocytes.

Effects of Staurosporine and Genistein on Superoxide Generation and Degranulation in PMA- or C5a-Activated Neutrophils

  • Ha, Sung-Heon;Lee, Chung-Soo
    • BMB Reports
    • /
    • 제28권3호
    • /
    • pp.210-215
    • /
    • 1995
  • Effects of staurosporine, genistein and pertussis toxin on PMA-induced superoxide generation and degranulation in neutrophils were investigated. Their effects were also examined in C5a-stimulated superoxide generation. PMA-induced superoxide generation was inhibited by staurosporine but was not affected by pertussis toxin. Genistein enhanced the stimulatory effect of PMA in a dose dependent fashion. C5a-induced superoxide generation was inhibited by staurosporine, genistein and pertussis toxin. An NADPH oxidase system of resting neutrophils was activated by PMA, and the stimulatory effect of PMA was inhibited by staurosporine but was not affected genistein and pertussis toxin. The activity of NADPH oxidase in the membrane fraction of PMA-activated neutrophils was not affected by staurosporine and genistein. PMA-induced acid phosphatase release was inhibited by staurosporine and genistein, whereas the effect of pertussis toxin was not detected. These results suggest' that the role of protein tyrosine kinase in neutrophil activation mediated by direct activation of protein kinase C may be different from receptor-mediated activation. The action of protein kinase C on the respiratory burst might be affected by the change of protein tyrosine kinase activity.

  • PDF

Effect of Staurosporine on the Long-term Secretion of Catecholamines Induced by Various Secretagogues in Cultured Bovine Adrenal Medullary Chromaffin Cells

  • Choi, Seong-Soo;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권6호
    • /
    • pp.503-510
    • /
    • 2001
  • Long-term treatment of cultured bovine adrenal medullary chromaffin (BAMC) cells with arachidonic acid $(100\;{\mu}M),$ angiotesnin II (100 nM), prostaglandin $E_2\;(PGE_2;\;10\;{\mu}M),$ veratridine $(2\;{\mu}M)$ or KCl (55 mM) for 24 hrs increased both norepinephrine and epinephrine levels in the supernatant. Pretreatment with staurosporine (10 nM), a protein kinase C (PKC) inhibitor, completely blocked increases of norepinephrine and epinephrine secretion induced by arachidonic acid, angiotensin II, $PGE_2,$ veratridine or KCl. In addition, K252a, another PKC inhibitor whose structure is similar to that of staurosporine, effectively attenuated both norepinephrine and epinephrine secretion induced by arachidonic acid. However, K252a did not affect the catecholamine secretion induced by angiotensin II, $PGE_2,$ veratridine or KCl. Our results suggest that staurosporine may inhibit long-term catecholamine secretion induced by various secretagogues in a mechanism other than inhibiting PKC signaling. Furthermore, long-term secretion of catecholamines induced by arachidonic acid may be dependent on PKC pathway.

  • PDF

A Highly Selective Staurosporine Derivative Designed by a New Selectivity Filter

  • El-Deeb, Ibrahim M.;Jung, Su-Jin;Park, Byung-Sun;Yoo, Young-Jun;Choi, Ki-Hang;Yang, Young-Mok;Lee, Sang-Woo;Kim, In-Tae;Han, Dong-Keun;Lee, So-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권5호
    • /
    • pp.1709-1714
    • /
    • 2011
  • KIST301135 was semi-synthetically prepared by the reaction of Staurosporine with triphosgene in anhydrous dichloromethane. The structure of KIST301135 was confirmed by $^1H$ NMR, $^{13}C$ NMR, and high resolution mass spectrum. KIST301135 was initially tested in a single dose duplicate mode at a concentration of 20 nM over a panel of 53 kinases against Staurosporine as a positive control. KIST301135 has showed inhibitions above 75% in only 2 kinases (FLT3 and JAK3 kinases) of the 53 tested kinases, while Staurosporine has showed inhibitions above 80% in about 62% of the tested kinases. KIST301135 was retested at a 5-dose testing mode over the 9 kinases inhibited by percentages over 20 at the single dose testing in order to determine its $IC_{50}$ values. KIST301135 has shown much improved kinase inhibitory selectivity relative to Staurosporine in its potency at JAK3 kinase and CAMK2b kinase.

Involvement of Protein Tyrosine Kinase in Stimulated Neutrophil Responses by Sodium Fluoride

  • Chung, Ki-Kwang;Han, Eun-Sook;Lee, Chung-Soo
    • BMB Reports
    • /
    • 제30권2호
    • /
    • pp.89-94
    • /
    • 1997
  • In this study, during the activation of neutrophil responses by sodium fluoride. involvement of protein tyrosine kinase was studied. Respiratory burst lysosomal enzyme release and elevation of $[Ca^{2+}]_i$stimulated by sodium fluoride in neutrophils were inhibited by protein kinase inhibitors, genistein and tyrphostin. The inhibitory effect of genistein and tyrphostin on superoxide and $H_{2}O_{2}$ production was less than that of protein kinase C inhibitors, staurosporine and H-7. Staurosporine and H-7 had little or no effect on the release of myeloperoxidase and acid phosphatase stimulated by sodium fluoride. EGTA and verapamil inhibited the elevation of $[Ca^{2+}]_i$ evoked by sodium fluoride. The inhibitory effect of staurosporine on the elevation of $[Ca^{2+}]_i$ was less than that of genistein. Phorbol 12-myristate 13-acetate (PMA)-stimulated superoxide production, which is sensitive to staurosporine, was further enhanced by genistein, whereas the stimulatory action of PMA on myeloperoxidase release was inhibited by genistein. A pretreatment of neutrophils with PMA signifcantly attenuated sodium fluoride-evoked elevation of $[Ca^{2+}]_i$ These results suggest that protein tyrosine kinase may be involved in the activation process of neutrophil responses due to direct stimulation of guanine nucleotide regulatory proteins. In neutrophil responses, PMA-stimulated neutrophils appear to show a different type of inhibition of protein tyrosine kinase.

  • PDF

Histone H4 is cleaved by granzyme A during staurosporine-induced cell death in B-lymphoid Raji cells

  • Lee, Phil Young;Park, Byoung Chul;Chi, Seung Wook;Bae, Kwang-Hee;Kim, Sunhong;Cho, Sayeon;Kang, Seongman;Kim, Jeong-Hoon;Park, Sung Goo
    • BMB Reports
    • /
    • 제49권10호
    • /
    • pp.560-565
    • /
    • 2016
  • Granzyme A (GzmA) was first identified as a cytotoxic T lymphocyte protease protein with limited tissue expression. A number of cellular proteins are known to be cleaved by GzmA, and its function is to induce apoptosis. Histones H1, H2B, and H3 were identified as GzmA substrates during apoptotic cell death. Here, we demonstrated that histone H4 was cleaved by GzmA during staurosporine-induced cell death; however, in the presence of caspase inhibitors, staurosporine-treated Raji cells underwent necroptosis instead of apoptosis. Furthermore, histone H4 cleavage was blocked by the GzmA inhibitor nafamostat mesylate and by GzmA knockdown using siRNA. These results suggest that histone H4 is a novel substrate for GzmA in staurosporine-induced cells.

E1B-19k의 세포내 위치와 Bax와의 Dimerization에 관한 연구 (E1B-19k does not Localize in Mitochondria nor Dimerize Bax even with the Staurosporine)

  • 윤수한;김진영;박승우;안영환;안영민;조기홍;조경기
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권6호
    • /
    • pp.725-730
    • /
    • 2000
  • Purpose : The subcellular localization of E1B-19k has been known cytosol or nuclear membrane by immunohistochemical staining and could dimerize with Bax to regulate cell death also known by the in-vitro immunoprecipitation. We planed to confirm this dimerization of E1B-19k with Bax in vivo in Cos-7 cells by using green fluorescent protein. Material and Method : We cloned E1B-19k and Bax into C3-EGFP. C3-EGFP-E1B-19k, C3-EGFP-Bax, and C3-EGFP-E1B-19k and pcDNA3-Bax were transfected into Cos-7 cells. We explored location of E1B-19k and Bax, and confirmed its dimerization with Bax in transfected living healthy Cos-7 cells by following green fluorescent protein of E1B-19k on the confocal microscope. Results : E1B-19k was located diffusely in cytoplasm and in nucleus but not in mitochondria. It prevented cell death from the apoptosis by staurosporine but its location was not changed. GFP-E1B-19k is not changed its intracellular location with Bax even with staurosporine. Conclusion : These results support that E1B-19k does not localize in mitochondria nor dimerize with Bax even with staurosporine. We could anticipate E1B-19k prevent cell death via the other dimerizing partner or pathways.

  • PDF

PKC-Independent Stimulation of Cardiac $Na^+/Ca^{2+}$ Exchanger by Staurosporine

  • Kang, Tong-Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권5호
    • /
    • pp.259-265
    • /
    • 2008
  • $[Ca^{2+}]_i$ transients by reverse mode of cardiac $Na^+/Ca^{2+}$ exchanger (NCX1) were recorded in fura-2 loaded BHK cells with stable expression of NCX1. Repeated stimulation of reverse NCX1 produced a long-lasting decrease of $Ca^{2+}$ transients ('rundown'). Rundown of NCX1 was independent of membrane $PIP_2$ depletion. Although the activation of protein kinase C (PKC) was observed during the $Ca^{2+}$ transients, neither a selective PKC inhibitor (calphostin C) nor a PKC activator (PMA) changed the degrees of rundown. By comparison, a non-specific PKC inhibitor, staurosporine (STS), reversed rundown in a dose-dependent and reversible manner. The action of STS was unaffected by pretreatment of the cells with calphostin C, PMA, or forskolin. Taken together, the results suggest that the stimulation of reverse NCX1 by STS is independent of PKC and/or PKA inhibition.