• Title/Summary/Keyword: Steel Wire-Integrated Deck Plate

Search Result 10, Processing Time 0.017 seconds

Structural Performance Evaluation on Flexural and Shear Capacity for Weight Reducing Steel Wire-Integrated Void Deck Plate Slab (자중저감 철선일체형 중공 데크플레이트 슬래브의 휨 및 전단내력에 대한 구조성능평가)

  • Kim, Sang-Seup;Ryu, Deog-Su;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.411-422
    • /
    • 2012
  • The purpose of this study is to evaluate the flexural and shear capacity of steel wire-integrated void deck plate slabs. In order to evaluate flexural and shear capacity, we make five 150mmspecimens and three 200mmspecimens by slab depth as main variable. Each series of specimen is comprised of an existing steel wire-integrated deck-plate slab and two specimens using topping depth as variable. From the series of experiments, steel wire-integrated void deck plate slabs has any decline in flexural and shear performance. Therefore, a void-deck-plate slab which inserts Omega-steel plate showed reducing a using concrete-volume and had flexural and shear capacity following existing steel wire-integrated deck-plate.

An Experimental Study for the Evaluation of the Structural Behavior Eco Deck Plate (Eco Deck Plate의 구조적 거동 평가를 위한 실험적 연구)

  • Lee, Jin-Eung;Lee, Yong-Jae;Lee, Soo-Kueon;Jung, Byung-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.40-48
    • /
    • 2013
  • Eco deck plate system is a construction method that deconstruction of galvanized steel sheets is possible by integrating steel-wire-integrated girders and the galvanized steel sheets with bolts. Therefore, compared with previous steel-wire-integrated deck plates which were joined by welding, the system is acknowledged as the construction method possible management and repair. This study conducted an experimental research by manufacturing total 24 full size specimens in a same condition for 12-shape specimens by two parts to evaluate structural behaviors of the eco deck plates. In the results after the test, permissible deflection for the construction load action was shown to be values under design values and satisfactory. The processing of lattice steel wires was presented to be structurally advantageous in being manufactured by cutting downward. Also, in case of a specimen that D13 as a steel wire was used, destruction occurred at the welding part of the bottom steel wire and the lattice steel wire, so improvement measures for the welding in factory manufacture are necessary.

Flexural Capacity and CO2 Reduction Evaluation for Composite Beam with Weight Reducing Steel Wire-Integrated Void Deck Plate slab (자중저감 철선일체형 중공 데크플레이트 슬래브를 사용한 합성보의 휨내력 및 CO2 감소량 평가)

  • Kim, Sang-Seop;Park, Dong-Soo;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.313-323
    • /
    • 2012
  • The purpose of this study is to evaluate $CO_2$ reduction and the flexural performance of steel wire-integrated void deck plate slabs that were inserted in omega-shaped steel plates to reduce concrete and welded H-section beams. The void deck plate slab can secure the structure, not only reducing the weight of the building but it is also eco-friendly. Therefore, this study evaluated the flexural performance of the composite beam by conducting a monotonic loading test with the use of actuators. It quantitatively evaluated the $CO_2$ emission based on earlier studies. The main test parameters are the concrete thickness of upper slabs, and the interrupted width of the omega-shaped steel plate. The result of the test showed that the welded H-section beam applied steel wire-integrated void deck plate slabs that were inserted into the omega-shaped steel plate declined in flexural performance on the composite beam after reducing concrete volume. Likewise, it is effective in reducing $CO_2$.

Development of Steel Wire-Integrated Deck Plate Applicable to Slab with 180mm Thickness (두께 180mm 슬래브에 적용 가능한 철선일체형 데크 플레이트 개발)

  • Lee, Yong Jae;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.89-98
    • /
    • 2012
  • A steel wire-integrated deck plate that welds integrated triangle truss steel wires on a galvanized steel sheet is developed to reduce construction costs of slabs or formworks such as shores and supports, and it is already widely applied in many construction fields. In this research, experimental tests for 14 full scale specimens, which are in the same field conditions, are conducted on several parameters such as the diameter of top, bottom and lattice steel wire, cutting methods of ends. According to the result, changes in final destruction types of the test bodies and cutting methods of ends didn't affect structural performance of test specimens, and for a 4.0m-span test specimen, there was no big problems in using bottom bar D7 or D8.

An Experimental Study on the Vibration and Fire Resistance of Steel Void Deck Plate Slab for Omega-steel plate (오메가형 강판을 중공체로 사용한 데크플레이트 슬래브의 진동 및 내화에 관한 실험적 연구)

  • Kim, Sang-Seup;Ryu, Deog-Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.705-713
    • /
    • 2011
  • This study was conducted to assess the vibration capacity and the fire resistance capacity of a deck plate slab using an omega steel plate as the void deck plate. First, to evaluate the vibration capacity of the deck plate slab after the insertion of the omega steel plate, three 150mm specimens and three 200mm specimens were made using the slab depth as the main variable. Each specimen consisted of an existing deck plate and two specimens, using the topping depth as the variable according to the slab depth. Second, two real-size specimens were made to evaluate the fire resistance capacity. The results of the test showed that the steel-wire-integrated deck plate slab that was inserted in the omega steel plate did not have a vibration problem due to the void deck plate, because the natural frequency was 12.66-14.09 Hz in the vibration test, and each specimen satisfied the appraisal standards for the load capacity, heat block quality, and chloride inhibition for two hours in the fire resistance test. Consequently, the steel-wire-integrated deck plate slab that was inserted in the omega steel plate can be reduced using the concrete volume and can have higher vibration and fire resistance capacities, similar to the existing deck plate.

Test research of Structural Safety for Steel Wire-Integrated Deck Plate System (철선일체형 데크 플레이트 구조성능평가를 위한 실험적 연구)

  • Lee, Yong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.220-228
    • /
    • 2010
  • A steel wire-integrated deck plate that welds integrated triangle truss steel wires on a galvanized steel sheet is developed to reduce construction costs of a slab or formwork such as shores and supports, and it is already widely applied in many construction fields. This study selected upper and lower steel wires, lattice steel wires, span, and cutting methods of ends as variables, and conducted an experimental test by manufacturing a total of 32 full scale test bodies. According to the result, changes in final destruction types of the test bodies and cutting methods of ends didn't affect structural performance of test bodies, and for a 3.2m-span test body, there was no big problems in using ${\Phi}4.5$ of lattice steel wires.

Test on the Structural Performance of the TOX Deck plate - Evaluation of Structural Safety during Construction Stage - (무용접 압접 데크플레이트의 구조성능에 관한 실험 - 시공단계에서의 구조안전성 평가 -)

  • Oh, Sang Hoon;Kim, Young Ju;Yoon, Myung Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.701-709
    • /
    • 2008
  • Owing to the decreased work term and the convenience of construction work in Korea, the steel deck plate system has been widely used in the construction field. Most of all, due to its good stiffness and economic consideration, the steel-wire-integrated deck plate system (or truss deck plate system) has become very popular in recent years. But although it has many advantages, the truss deck plate system has a critical defect: it gets rusty in the welding joints between the lattice steel wire and the deck plate, resulting in the cracking of such welding joints and water leakage. To address these problems, a new type of truss deck plate system, which need not be welded and does not rust, was proposed herein: the TOX deck plate system. In this study, tests were conducted on 15 specimens to evaluate the structural safety of the proposed deck plate system during the construction stage. The test parameters were as follows: the depth of the slab the length of the span the diameters of the top, bottom, and lattice steel wire and the material properties of the zinc-coated steel sheets. The test results show that the TOX deck plate system can guarantee structural safety owing to its deflection and strength.

Analytical Study on Structural Performance of Wire-Integrated Steel Decks with Varied Lattice End-Support Configurations (철선일체형 데크플레이트의 래티스 단부 지지형상과 구조성능에 대한 해석적 연구)

  • Sanghee Kim;Jong-Kook Hong;Deung-Hwan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.95-102
    • /
    • 2023
  • This study investigated the structural performance of wire-integrated steel decks with varied lattice end support conditions through finite element analysis. The results indicated that the steel decks with the lattice foots positioned above the supporting structural member have the higher system stiffness compared to the cases with the lattice foots shifted away from the support. It is also observed that the contribution of the end vertical bars on both the system stiffness and the strength is negligible when the lattice foots are located on the support. It is, especially, revealed that the end vertical bars can be eliminated when the lattice foot length is not smaller than 40mm. The ultimate load-carrying capacity of the system is not significantly affected by the lattice end support condition. The failure mode of the system is the top bar buckling at the center of the deck plate, the lattice end buckling, and the combination of both depending of design intention.

Development and Performance Evaluation of the Shear Connector of Composite Beam with Vertical Bars (직봉의 기능을 포함한 합성보의 전단연결재 개발과 성능평가)

  • Kim, Sang-Seup;Park, Dong-Soo;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.725-736
    • /
    • 2011
  • In a composite beam, a shear connector is installed to resist the horizontal shear on an interface between steel beams and reinforced concrete slabs. The steel-wire-integrated deck plate slab is commonly used at the wide section beam. Then vertical bars are installed at the upper wire of the ends of the steel truss girder to ensure safety during the construction. The new type of shear connector is made of deformed bar and steel plates, and must function as vertical bars but must have higher shear capacity. This paper examines the ways to develop and utilize this new shear connector. From the push-out experiments, a shear connector made of a continuous deformed bar and steel plate showed a higher shear capacity and ductility than a ${\phi}16$ stud connector, and functioned as a vertical bar.

An Experimental Evaluation of Bending and Shear Resisting Strengths for Wire-Integrated Deck Plate System using Lightweight Concrete (경량콘크리트를 사용한 철선일체형 바닥구조의 휨내력 및 전단내력 실험적 평가)

  • Lee, Seong-Hui;Bang, Jung-Seok;Won, Yong-An;Ryoo, Jae-Yong;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.275-282
    • /
    • 2011
  • A recent development of seismic design, which is required among environmentally friendly members, increased the concern on light-weight concrete. Extending around the building, the structural design which is applied for light-weight concrete has been increased. This study therefore evaluates the bending resistance and the shear resistance involved using four specimens that were manufactured and tested. The parameters used in this study exist. This study investigates the structural performance of composite slab using light-weight concrete with KCI (2007).