• 제목/요약/키워드: Store-operated calcium channels

검색결과 11건 처리시간 0.02초

Docosahexaenoic acid reduces adenosine triphosphate-induced calcium influx via inhibition of store-operated calcium channels and enhances baseline endothelial nitric oxide synthase phosphorylation in human endothelial cells

  • Vu, Thom Thi;Dieterich, Peter;Vu, Thu Thi;Deussen, Andreas
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권5호
    • /
    • pp.345-356
    • /
    • 2019
  • Docosahexaenoic acid (DHA), an omega-3-fatty acid, modulates multiple cellular functions. In this study, we addressed the effects of DHA on human umbilical vein endothelial cell calcium transient and endothelial nitric oxide synthase (eNOS) phosphorylation under control and adenosine triphosphate (ATP, $100{\mu}M$) stimulated conditions. Cells were treated for 48 h with DHA concentrations from 3 to $50{\mu}M$. Calcium transient was measured using the fluorescent dye Fura-2-AM and eNOS phosphorylation was addressed by western blot. DHA dose-dependently reduced the ATP stimulated $Ca^{2+}$-transient. This effect was preserved in the presence of BAPTA (10 and $20{\mu}M$) which chelated the intracellular calcium, but eliminated after withdrawal of extracellular calcium, application of 2-aminoethoxy-diphenylborane ($75{\mu}M$) to inhibit store-operated calcium channel or thapsigargin ($2{\mu}M$) to delete calcium store. In addition, DHA ($12{\mu}M$) increased ser1177/thr495 phosphorylation of eNOS under baseline conditions but had no significant effect on this ratio under conditions of ATP stimulation. In conclusion, DHA dose-dependently inhibited the ATP-induced calcium transient, probably via store-operated calcium channels. Furthermore, DHA changed eNOS phosphorylation suggesting activation of the enzyme. Hence, DHA may shift the regulation of eNOS away from a $Ca^{2+}$ activated mode to a preferentially controlled phosphorylation mode.

Calcium permeability of transient receptor potential canonical (TRPC) 4 channels measured by TRPC4-GCaMP6s

  • Ko, Juyeon;Myeong, Jongyun;Yang, Dongki;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권1호
    • /
    • pp.133-140
    • /
    • 2017
  • Conflicting evidence has been obtained regarding whether transient receptor potential cation channels (TRPC) are store-operated channels (SOCs) or receptor-operated channels (ROCs). Moreover, the Ca/Na permeability ratio differs depending on whether the current-voltage (I-V) curve has a doubly rectifying shape or inward rectifying shape. To investigate the calcium permeability of TRPC4 channels, we attached GCaMP6s to TRPC4 and simultaneously measured the current and calcium signals. A TRPC4 specific activator, (-)-englerin A, induced both current and calcium fluorescence with the similar time course. Muscarinic receptor stimulator, carbachol, also induced both current and calcium fluorescence with the similar time course. By forming heteromers with TRPC4, TRPC1 significantly reduced the inward current with outward rectifying I-V curve, which also caused the decrease of calcium fluorescence intensity. These results suggest that GCaMP6s attached to TRPC4 can detect slight calcium changes near TRPC4 channels. Consequently, TRPC4-GCaMP6s can be a useful tool for testing the calcium permeability of TRPC4 channels.

Effects of chlorogenic acid on intracellular calcium regulation in lysophosphatidylcholine-treated endothelial cells

  • Jung, Hye-Jin;Im, Seung-Soon;Song, Dae-Kyu;Bae, Jae-Hoon
    • BMB Reports
    • /
    • 제50권6호
    • /
    • pp.323-328
    • /
    • 2017
  • Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein (ox-LDL) and is implicated in its atherogenic activity. This study investigated the effects of LPC on cell viability, intracellular calcium homeostasis, and the protective mechanisms of chlorogenic acid (CGA) in human umbilical vein endothelial cells (HUVECs). LPC increased intracellular calcium ($[Ca^{2+}]_i$) by releasing $Ca^{2+}$ from intracellular stores and via $Ca^{2+}$ influx through store-operated channels (SOCs). LPC also increased the generation of reactive oxygen species (ROS) and decreased cell viability. The mRNA expression of Transient receptor potential canonical (TRPC) channel 1 was increased significantly by LPC treatment and suppressed by CGA. CGA inhibited LPC-induced $Ca^{2+}$ influx and ROS generation, and restored cell viability. These results suggested that CGA inhibits SOC-mediated $Ca^{2+}$ influx and ROS generation by attenuating TRPC1 expression in LPC-treated HUVECs. Therefore, CGA might protect endothelial cells against LPC injury, thereby inhibiting atherosclerosis.

Regulatory mechanisms of the store-operated Ca2+ entry through Orai1 and STIM1 by an adaptor protein in non-excitable cells

  • Kang, Jung Yun;Yang, Yu-Mi
    • International Journal of Oral Biology
    • /
    • 제47권3호
    • /
    • pp.33-40
    • /
    • 2022
  • Store-operated Ca2+ entry (SOCE) represents one of the major Ca2+ entry routes in non-excitable cells. It is involved in a variety of fundamental biological processes and the maintenance of Ca2+ homeostasis. The Ca2+ release-activated Ca2+ (CRAC) channel consists of stromal interaction molecule and Orai; however, the role and action of Homer proteins as an adaptor protein to SOCE-mediated Ca2+ signaling through the activation of CRAC channels in non-excitable cells still remain unknown. In the present study, we investigated the role of Homer2 in the process of Ca2+ signaling induced by the interaction between CRACs and Homer2 proteins in non-excitable cells. The response to Ca2+ entry by thapsigargin-mediated Ca2+ store depletion remarkably decreased in pancreatic acinar cells of Homer2-/- mice, as compared to wild-type cells. It also showed critical differences in regulated patterns by the specific blockers of SOCE in pancreatic acinar cells of Homer2-/- mice. The response to Ca2+ entry by the depletion in Ca2+ store markedly increased in the cellular overexpression of Orai1 and STIM1 as compared to the overexpression of Homer2 in cells; however, this response was remarkably inhibited by the overexpression of Orai1, STIM1, and Homer2. These results suggest that Homer2 has a critical role in the regulatory action of SOCE activity and the interactions between CRAC channels.

Inhibition of Calcium Transport by $(1R,9S)-\beta-Hydrastine$ Hydrochloride in PC12 Cells

  • Yin, Shou-Yu;Lee, Myung-Koo
    • Natural Product Sciences
    • /
    • 제12권4호
    • /
    • pp.217-220
    • /
    • 2006
  • The effects of $(1R,9S)-\beta-hydrastine$ hydrochloride (BHSH) on $Ca^{2+}$ transport in rat pheochromocytoma PC12 cells were investigated. In the presence of external $Ca^{2+}$, BHSH at $100{\mu}M$ inhibited $K^+$ (56mM)-induced dopamine release, and $K^+-induced$ $Ca^{2+}$ influx and a sustained rise of $[Ca^{2+}]_i$. In addition, BHSH at 100 f.!M reduced the sustained rise of $[Ca^{2+}]_i$ elicited by 20 mM caffeine, but not by $1{\mu}M$ thapsigargin, in presence of external $Ca^{2+}$. These results suggest that BHSH inhibited $K^+-induced$ dopamine release and $[Ca^{2+}]_i$ influx, and store-operated $Ca^{2+}$ channels activated by caffeine, but not by thapsigargin, in PC12 cells.

Store-operated calcium entry in the satellite glial cells of rat sympathetic ganglia

  • Sohyun Kim;Seong Jun Kang;Huu Son Nguyen;Seong-Woo Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권1호
    • /
    • pp.93-103
    • /
    • 2024
  • Satellite glial cells (SGCs), a major type of glial cell in the autonomic ganglia, closely envelop the cell body and even the synaptic regions of a single neuron with a very narrow gap. This structurally unique organization suggests that autonomic neurons and SGCs may communicate reciprocally. Glial Ca2+ signaling is critical for controlling neural activity. Here, for the first time we identified the machinery of store-operated Ca2+ entry (SOCE) which is critical for cellular Ca2+ homeostasis in rat sympathetic ganglia under normal and pathological states. Quantitative realtime PCR and immunostaining analyses showed that Orai1 and stromal interaction molecules 1 (STIM1) proteins are the primary components of SOCE machinery in the sympathetic ganglia. When the internal Ca2+ stores were depleted in the absence of extracellular Ca2+, the number of plasmalemmal Orai1 puncta was increased in neurons and SGCs, suggesting activation of the Ca2+ entry channels. Intracellular Ca2+ imaging revealed that SOCE was present in SGCs and neurons; however, the magnitude of SOCE was much larger in the SGCs than in the neurons. The SOCE was significantly suppressed by GSK7975A, a selective Orai1 blocker, and Pyr6, a SOCE blocker. Lipopolysaccharide (LPS) upregulated the glial fibrillary acidic protein and Toll-like receptor 4 in the sympathetic ganglia. Importantly, LPS attenuated SOCE via downregulating Orai1 and STIM1 expression. In conclusion, sympathetic SGCs functionally express the SOCE machinery, which is indispensable for intracellular Ca2+ signaling. The SOCE is highly susceptible to inflammation, which may affect sympathetic neuronal activity and thereby autonomic output.

Regulation of the expression and function of TRPCs and Orai1 by Homer2 in mouse pancreatic acinar cells

  • Kang, Jung Yun;Kang, Namju;Yang, Yu-Mi
    • International Journal of Oral Biology
    • /
    • 제46권3호
    • /
    • pp.134-139
    • /
    • 2021
  • Under physiological conditions, calcium (Ca2+) regulates essential functions of polarized secretory cells by the stimulation of specific Ca2+ signaling mechanisms, such as increases in intracellular Ca2+ concentration ([Ca2+]i) via the store-operated Ca2+ entry (SOCE) and the receptor-operated Ca2+ entry (ROCE). Homer proteins are scaffold proteins that interact with G protein-coupled receptors, inositol 1,4,5-triphosphate (IP3) receptors, Orai1-stromal interaction molecule 1, and transient receptor potential canonical (TRPC) channels. However, their role in the Ca2+ signaling in exocrine cells remains unknown. In this study, we investigated the role of Homer2 in the Ca2+ signaling and regulatory channels to mediate SOCE and ROCE in pancreatic acinar cells. Deletion of Homer2 (Homer2-/-) markedly increased the expression of TRPC3, TRPC6, and Orai1 in pancreatic acinar cells, whereas these expressions showed no difference in whole brains of wild-type and Homer2-/- mice. Furthermore, the response of Ca2+ entry by carbachol also showed significant changes to the patterns regulated by specific blockers of SOCE and ROCE in pancreatic acinar cells of Homer2-/- mice. Thus, these results suggest that Homer2 plays a critical role in the regulatory action of the [Ca2+]i via SOCE and ROCE in mouse pancreatic acinar cells.

Afatinib Mediates Autophagic Degradation of ORAI1, STIM1, and SERCA2, Which Inhibits Proliferation of Non-Small Cell Lung Cancer Cells

  • Kim, Mi Seong;Kim, So Hui;Yang, Sei-Hoon;Kim, Min Seuk
    • Tuberculosis and Respiratory Diseases
    • /
    • 제85권2호
    • /
    • pp.147-154
    • /
    • 2022
  • Background: The expression of calcium signaling pathway molecules is altered in various carcinomas, which are related to the proliferation and altered characteristics of cancer cells. However, changes in calcium signaling in anti-cancer drug-resistant cells (bearing a T790M mutation in epidermal growth factor receptor [EGFR]) remain unclear. Methods: Afatinib-mediated changes in the level of store-operated Ca2+ entry (SOCE)-related proteins and intracellular Ca2+ level in non-small cell lung cancer cells with T790M mutation in the EGFR gene were analyzed using western blot and ratiometric assays, respectively. Afatinib-mediated autophagic flux was evaluated by measuring the cleavage of LC3B-II. Flow cytometry and cell proliferation assays were conducted to assess cell apoptosis and proliferation. Results: The levels of SOCE-mediating proteins (ORAI calcium release-activated calcium modulator 1 [ORAI1], stromal interaction molecule 1 [STIM1], and sarco/endoplasmic reticulum Ca2+ ATPase [SERCA2]) decreased after afatinib treatment in non-small cell lung cancer cells, whereas the levels of SOCE-related proteins did not change in gefitinib-resistant non-small cell lung cancer cells (PC-9/GR; bearing a T790M mutation in EGFR). Notably, the expression level of SOCE-related proteins in PC-9/GR cells was reduced also responding to afatinib in the absence of extracellular Ca2+. Moreover, extracellular Ca2+ influx through the SOCE was significantly reduced in PC-9 cells pre-treated with afatinib than in the control group. Additionally, afatinib was found to decrease the level of SOCE-related proteins through autophagic degradation, and the proliferation of PC-9GR cells was significantly inhibited by a lack of extracellular Ca2+. Conclusion: Extracellular Ca2+ plays important role in afatinib-mediated autophagic degradation of SOCE-related proteins in cells with T790M mutation in the EGFR gene and extracellular Ca2+ is essential for determining anti-cancer drug efficacy.

Caffeine and 2-Aminoethoxydiphenyl Borate (2-APB) Have Different Ability to Inhibit Intracellular Calcium Mobilization in Pancreatic Acinar Cell

  • Choi, Kyung-Jin;Kim, Kab-Sung;Kim, Se-Hoon;Kim, Dong-Kwan;Park, Hyung-Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권2호
    • /
    • pp.105-111
    • /
    • 2010
  • Inositol 1,4,5-trisphosphate receptors ($InsP_3Rs$) modulate $Ca^{2+}$ release from intracellular $Ca^{2+}$ store and are extensively expressed in the membrane of endoplasmic/sarcoplasmic reticulum and Golgi. Although caffeine and 2-aminoethoxydiphenyl borate (2-APB) have been widely used to block $InsP_3Rs$, the use of these is limited due to their multiple actions. In the present study, we examined and compared the ability of caffeine and 2-APB as a blocker of $Ca^{2+}$ release from intracellular $Ca^{2+}$ stores and $Ca^{2+}$ entry through store-operated $Ca^{2+}$ (SOC) channel in the mouse pancreatic acinar cell. Caffeine did not block the $Ca^{2+}$ entry, but significantly inhibited carbamylcholine (CCh)-induced $Ca^{2+}$ release. In contrast, 2-APB did not block CCh-induced $Ca^{2+}$ release, but remarkably blocked SOC-mediated $Ca^{2+}$ entry at lower concentrations. In permeabilized acinar cell, caffeine had an inhibitory effect on InsP3-induced $Ca^{2+}$ release, but 2-APB at lower concentration, which effectively blocked $Ca^{2+}$ entry, had no inhibitory action. At higher concentrations, 2-APB has multiple paradoxical effects including inhibition of Ins$P_3$-induced $Ca^{2+}$ release and direct stimulation of $Ca^{2+}$ release. Based on the results, we concluded that caffeine is useful as an inhibitor of $InsP_3R$, and 2-APB at lower concentration is considered a blocker of $Ca^{2+}$ entry through SOC channels in the pancreatic acinar cell.

Cyanidin-3-glucoside Inhibits ATP-induced Intracellular Free $Ca^{2+}$ Concentration, ROS Formation and Mitochondrial Depolarization in PC12 Cells

  • Perveen, Shazia;Yang, Ji Seon;Ha, Tae Joung;Yoon, Shin Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권4호
    • /
    • pp.297-305
    • /
    • 2014
  • Flavonoids have an ability to suppress various ion channels. We determined whether one of flavonoids, cyanidin-3-glucoside, affects adenosine 5'-triphosphate (ATP)-induced calcium signaling using digital imaging methods for intracellular free $Ca^{2+}$ concentration ([$Ca^{2+}$]i), reactive oxygen species (ROS) and mitochondrial membrane potential in PC12 cells. Treatment with ATP ($100{\mu}M$) for 90 sec induced [$Ca^{2+}$]i increases in PC12 cells. Pretreatment with cyanidin-3-glucoside ($1{\mu}g/ml$ to $100{\mu}g/ml$) for 30 min inhibited the ATP-induced [$Ca^{2+}$]i increases in a concentration-dependent manner ($IC_{50}=15.3{\mu}g/ml$). Pretreatment with cyanidin-3-glucoside ($15{\mu}g/ml$) for 30 min significantly inhibited the ATP-induced [$Ca^{2+}$]i responses following removal of extracellular $Ca^{2+}$ or depletion of intracellular [$Ca^{2+}$]i stores. Cyanidin-3-glucoside also significantly inhibited the relatively specific P2X2 receptor agonist 2-MeSATP-induced [$Ca^{2+}$]i responses. Cyanidin-3-glucoside significantly inhibited the thapsigargin or ATP-induced store-operated calcium entry. Cyanidin-3-glucoside significantly inhibited the ATP-induced [$Ca^{2+}$]i responses in the presence of nimodipine and ${\omega}$-conotoxin. Cyanidin-3-glucoside also significantly inhibited KCl (50 mM)-induced [$Ca^{2+}$]i increases. Cyanidin-3-glucoside significantly inhibited ATP-induced mitochondrial depolarization. The intracellular $Ca^{2+}$ chelator BAPTA-AM or the mitochondrial $Ca^{2+}$ uniporter inhibitor RU360 blocked the ATP-induced mitochondrial depolarization in the presence of cyanidin-3-glucoside. Cyanidin-3-glucoside blocked ATP-induced formation of ROS. BAPTA-AM further decreased the formation of ROS in the presence of cyanidin-3-glucoside. All these results suggest that cyanidin-3-glucoside inhibits ATP-induced calcium signaling in PC12 cells by inhibiting multiple pathways which are the influx of extracellular $Ca^{2+}$ through the nimodipine and ${\omega}$-conotoxin-sensitive and -insensitive pathways and the release of $Ca^{2+}$ from intracellular stores. In addition, cyanidin-3-glucoside inhibits ATP-induced formation of ROS by inhibiting $Ca^{2+}$-induced mitochondrial depolarization.