• Title/Summary/Keyword: Sub-health

Search Result 2,500, Processing Time 0.028 seconds

Assessing the Health Benefits of PM2.5 Reduction Using AirQ+ and BenMAP (AirQ+와 BenMAP을 이용한 초미세먼지 개선의 건강편익 산정)

  • Sun-Yeong Gan;Hyun-Joo Bae
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.1
    • /
    • pp.30-36
    • /
    • 2023
  • Background: Among various pollutants, fine particle (PM2.5, defined as particle less than 2.5 nm in aerodynamic diameter) shows the most consistent association with adverse health effects. There is scientific evidence documenting a variety of adverse health outcomes due to exposure to PM2.5. Objectives: This study aims to assess the health benefits of that would be achieved by meeting the World Health Organization's air quality guidelines for PM2.5 using AirQ+ and BenMAP. Methods: We estimated PM2.5 related health benefits in Korea from implementing the World Health Organization's air quality guidelines (annual average 5 ㎍/m3 and 10 ㎍/m3) and Korea's National Ambient Air Quality Standard (annual average 15 ㎍/m3). We used World Health Organization's AirQ+ and U.S. Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program. Results: The annual number of avoided PM2.5 related premature deaths exceeding WHO guideline levels was assessed using both AirQ+ and BenMAP. We estimated that the health benefits of attaining the World Health Organization's air quality guidelines for PM2.5 (annual average 5 ㎍/m3) would suggest an annual reduction of 26,128 (95% confidence interval [CI]: 17,363~34,024) and 26,853 (95% CI: 18,527~34,944) premature deaths. Conclusions: Our study provided useful information to policy makers and confirms that the reduction of PM2.5 concentration would result in significant health benefits in Korea.

Analysis on the Effects of Particular Matter Distribution on the Number of Outpatient Visits for Allergic Rhinitis (지역별 미세먼지 농도의 알레르기비염 외래이용에 대한 영향 분석)

  • Park, Ju Hyun;Park, Young Yong;Lee, Eunjoo;Lee, Kwang-Soo
    • Health Policy and Management
    • /
    • v.30 no.1
    • /
    • pp.50-61
    • /
    • 2020
  • Background: This study aims to analyze the effects of air pollutants, such as particular matter, to the number of outpatient visits for allergic rhinitis in eup, myeon, and dong administrative boundaries. Methods: Dependent variable was the number of outpatient visits for allergic rhinitis per 10,000 people by region. Independent variables were air pollutants such as PM10, PM2.5, SO2, O3, CO2, NO2, and temperature that estimated by using Kriging analysis in all eup, myeon, and dong boundaries. Panel analysis was applied for the analysis to prove the relation between outpatient visits and the concentration of air pollutants. Results: Analysis results showed that particular matter concentration varied by regions and season. Panel analysis showed that outpatient visits for allergic rhinitis had positive relationships with PM10, PM2.5, SO2, O3, and CO2 in all panel models. Conclusion: Regional variation of particular matter concentration should be considered in establishing regional policies for allergic rhinitis.

Dust Collection Efficiency, Inhalation Pressure, and CO2 Concentration in Health Masks (보건용 마스크의 분진포집효율, 흡기저항 및 CO2 농도)

  • Han, Don-Hee;Kim, Il Soon
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.1
    • /
    • pp.78-87
    • /
    • 2020
  • Objectives: To identify the degree of physical burden, a determination was undertaken of dust collection efficiency, inhalation pressure, and CO2 concentration related to health masks certified by the Ministry of Food and Drug Safety (MFDS). Methods: Twenty health masks were purchased on the market. Dust collection efficiency and inhalation pressure were determined in the same manner as in MFDS certification testing, respectively using TSI Model 8130 (TSI, U.S.) and ART Plus (Korea). CO2 concentrations for 20 subjects using a CO2 analyzer (G100, G150, Geotechnical Instrument Ltd., UK) were measured with a similar method as a total inward leakage test. In addition to CO2 levels, dead space volumes in the masks was determined for predicting concentrations of CO2 in inhalation air. Results: Most of the dust collection efficiencies found for the 20 masks were far higher than the standard. Four KF94s met KF99 and four KF80s even met KF94. Most inhalation pressures were also much lower than the standard, with many almost one-half of the standard. The mean and standard deviation of CO2 concentration in the mask were 2.9±0.44%. Considering dead volume, the prediction for CO2 concentration in the inhalation air was 4,395±1,266 ppm. Conclusions: For healthy men and women, the dust collection efficiency and inhalation pressure of health masks were not at a level that would affect their health. Although CO2 levels in the inhalation air were predicted not to affect health, research on the physiological effects of health masks on Koreans is needed for more precise research.

Evaluation of PM2.5 Exposure Contribution Using a Microenvironmental Model (국소환경 모델을 이용한 초미세먼지(PM2.5) 노출 기여율 평가)

  • Shin, Jihun;Choe, Yongtae;Kim, Dongjun;Min, Gihong;Woo, Jaemin;Kim, Dongjun;Shin, Junghyun;Cho, Mansu;Sung, Kyeonghwa;Lee, Jongdae;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.2
    • /
    • pp.59-65
    • /
    • 2022
  • Background: Since people move through microenvironments rather than staying in one place, they may be exposed to both indoor and outdoor PM2.5 concentrations. Objectives: The aim of this study was to assess the exposure level of each sub-population group and evaluate the contribution rate of the major microenvironments. Methods: Exposure scenarios for sub-population groups were constructed on the basis of a 2019 Time-Use survey and the previous literature. A total of five population groups were classified and researchers wearing MicroPEM simulated monitoring PM2.5 exposure concentrations in real-time over three days. The exposure contribution for each microenvironment were evaluated by multiplying the inhalation rate and the PM2.5 exposure concentration levels. Results: Mean PM2.5 concentrations were 33.0 ㎍/m3 and 22.5 ㎍/m3 in Guro-gu and Wonju, respectively. When the exposure was calculated considering each inhalation rate and concentration, the home showed the highest exposure contribution rate for PM2.5. As for preschool children, it was 90.8% in Guro-gu, 94.1% in Wonju. For students it was 65.3% and 67.3%. For housewives it was 98.2% and 95.8%, and 59.5% and 91.7% for office workers. Both regions had higher exposure to PM2.5 among the elderly compared to other populations, and their PM2.5 exposure contribution rates were 98.3% and 94.1% at home for Guro-gu and Wonju, respectively. Conclusions: The exposure contribution rate could be dependent on time spent in microenvironments. Notably, the contribution rate of exposure to PM2.5 at home was the highest because most people spend the longest time at home. Therefore, microenvironments such as home with a higher contribution rate of exposure to PM2.5 could be managed to upgrade public health.

A Study on the Management and Utilization of Sub-Health Center in Rural area, Paraguay [1] - Focused on Limpio, Paraguay (파라과이 농촌지역 보건지소의 시설 관리 및 이용실태에 관한 연구[1] - 파라과이 림삐오시를 중심으로)

  • Kim, Ji Eon;Kim, Min Kyu;Nam, Eun Woo
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.26 no.2
    • /
    • pp.7-17
    • /
    • 2020
  • Purpose: The purpose of this study is to identify the operational status and current management of Sub-Health Centers in Limpio, Paraguay. Second, understanding the use of Sub-Health Centers and Perceptions of Sub-Health Centers in Limpio, Paraguay. Third, Providing policy implications for strengthening the Health Delivery System in Paraguay. Methods: The survey of the current status of sub-health centers in Limpio was conducted with observation and interview. Utilization of Sub-Health centers was analyzed in the 2018 Paraguay Community Health Survey. A face to face interview was conducted to complete a questionnaire and 831 samples were collected for the study. Results: In order to perform the normal function of the sub-health center, it will be necessary to allocate manpower that meets the standard. A common problem with sub-health centers in Limpio is that they have an environment vulnerable to rain. Currently, there are no health promotion and communicable disease management programs in sub-health center. Satisfaction of users about treatment, equipment, medicines and cleanleness of rooms. Implications: First, it is necessary to allocate human resources and organize spaces according to the standard. Second, there was a problem caused by moisture, and continuous maintenance and repair are required. Third, water and sewage related facilities must be safely improved to prevent contamination of groundwater. Forth, it is necessary to implement a program that fits the role of the sub-health center. Fifth, it is necessary to form a health delivery system considering the accessibility of residents. Finally, it is necessary to discuss the location of sub-health center considering travel time of Limpio residents.

Preliminary Research to Support Air Quality Management Policies for Basic Local Governments in Gyeonggi-do (경기도 기초지자체 대기환경 관리정책 지원을 위한 선행 연구)

  • Chanil Jeon;Jingoo Kang;Minyoung Oh;Jaehyeong Choi;Jonghyun Shin;Chanwon Hwang
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.5
    • /
    • pp.275-288
    • /
    • 2023
  • Background: When basic local governments want to improve their air quality management policies, they need fundamental evidence, such as the effectiveness of current policies or scenario results. Objectives: The purpose of this study is to lay the groundwork for a process to calculate air pollutant reduction from basic local government air quality policies and provide numerical estimates of PM2.5 concentrations following improved policies. Methods: We calculated the amount of air pollutant reduction that can be expected in the research region based on the Gyeonggi-do Air Environment Management Implementation Plan issued in 2021 and guidelines from the Korean Ministry of Environment. The PM2.5 concentration variations were numerically simulated using the CMAQ (photochemical air quality model). Results: The research regions selected were Suwon, Ansan, Yongin, Pyeongtaek, and Hwaseong in consideration of population, air pollutant emissions, and geographical requirements. The expected reduction ratios in 2024 compared to 2018 are CO (3.0%), NOx (7.9%), VOCs (0.7%), SOx (0.1%), PM10 (2.4%), PM2.5 (6.1%), NH3 (0.05%). The reduced PM2.5 concentration ratio was highest in July and lowest in April. The expected concentration reduction of yearly mean PM2.5 in the research region is 0.12 ㎍/m3 (0.6%). Conclusions: Gyeonggi-do is now able to quickly provide air pollutant emission reduction calculations by respective policy scenario and PM2.5 simulation results, including for secondary aerosol particles. In order to provide more generalized results to basic local governments, it is necessary to conduct additional research by expanding the analysis tools and periods.

Evaluation of Population Exposures to PM2.5 before and after the Outbreak of COVID-19 (서울시 구로구에서 COVID-19 발생 전·후 초미세먼지(PM2.5) 농도 변화에 따른 인구집단 노출평가)

  • Kim, Dongjun;Min, Gihong;Choe, Yongtae;Shin, Junshup;Woo, Jaemin;Kim, Dongjun;Shin, Junghyun;Jo, Mansu;Sung, Kyeonghwa;Choi, Yoon-hyeong;Lee, Chaekwan;Choi, Kilyoong;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.521-529
    • /
    • 2021
  • Background: The coronavirus disease (COVID-19) has caused changes in human activity, and these changes may possibly increase or decrease exposure to fine dust (PM2.5). Therefore, it is necessary to evaluate the exposure to PM2.5 in relation to the outbreak of COVID-19. Objectives: The purpose of this study was to compare and evaluate the exposure to PM2.5 concentrations by the variation of dynamic populations before and after the outbreak of COVID-19. Methods: This study evaluated exposure to PM2.5 concentrations by changes in the dynamic population distribution in Guro-gu, Seoul, before and after the outbreak of COVID-19 between Jan and Feb, 2020. Gurogu was divided into 2,204 scale standard grids of 100 m×100 m. Hourly PM2.5 concentrations were modeled by the inverse distance weight method using 24 sensor-based air monitoring instruments. Hourly dynamic population distribution was evaluated according to gender and age using mobile phone network data and time-activity patterns. Results: Compared to before, the population exposure to PM2.5 decreased after the outbreak of COVID-19. The concentration of PM2.5 after the outbreak of COVID-19 decreased by about 41% on average. The variation of dynamic population before and after the outbreak of COVID-19 decreased by about 18% on average. Conclusions: Comparing before and after the outbreak of COVID-19, the population exposures to PM2.5 decreased by about 40%. This can be explained to suggest that changes in people's activity patterns due to the outbreak of COVID-19 resulted in a decrease in exposure to PM2.5.

Assessment of PM2.5 and Black Carbon Concentrations among Street Vendors: Focusing on Cooking Stalls (거리 가판대에서의 초미세먼지(PM2.5)와 블랙 카본(BC)의 농도평가: 조리 가판대를 중심으로)

  • Minjung, Kim;Jiyun, Shin;Jiwon, Jeong;Sueun, Choi;Kiyoung, Lee
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.6
    • /
    • pp.291-297
    • /
    • 2022
  • Background: PM2.5 and black carbon (BC) can be generated from cooking and from vehicle operation. Street vendors may be exposed to PM2.5 and BC due to their proximity both to roads and to cooking activities. Objectives: The objectives of this study were to evaluate the PM2.5 and BC concentrations in cooking stalls and to determine the effects of cooking activity and of types of cooking. Methods: Indoor and outdoor PM2.5 and BC concentrations, temperature, and relative humidity were measured in 32 stalls in April and May 2022. Behavioral factors such as the presence of cooking activity and types of cooking were observed. Student's T-test was performed using the difference of indoor and outdoor PM2.5 and BC concentrations to compare the effects of cooking activity and to compare types of cooking. Results: One-hour averages of the difference in indoor and outdoor PM2.5 concentrations for cooking stalls and non-cooking stalls were 9.7±15.7 ㎍/m3 (n=22) and -0.5±0.4 ㎍/m3 (n=10), respectively. The difference in indoor and outdoor PM2.5 concentrations in cooking stalls was significantly higher than in non-cooking stalls (p<0.05). The indoor PM2.5 concentration for stalls for Chinese pancakes and teokbokki exceeded the standards for indoor air quality in South Korea (50 ㎍/m3 ). The indoor PM2.5 concentration for Korean pancake stalls exceeded the standards for outdoor air quality in South Korea (35 ㎍/m3 for 24 hours). Conclusions: The PM2.5 concentrations in stalls with cooking activity was significantly higher than those in stalls without cooking activity. Some stalls with certain types of foods exceeded standards for indoor and outdoor air quality in South Korea. Better management of indoor air quality in stalls with cooking activities is necessary.

The Statistical Analyses of Oriental Medical Office of Sub-health Center During Recent 3 years (최근 3년간 보건지소 한방진료실의 현황에 대한 통계적 연구)

  • Roh, Hong-Pyo;Sul, In-Chan;Kim, Yoon-sik
    • Journal of Haehwa Medicine
    • /
    • v.13 no.2
    • /
    • pp.213-219
    • /
    • 2004
  • Objective: We investigated the actual condition of oriental medical office in Sub-health Center. Method: We classified patients who visited an oriental medical office in a sub-health center of Jeollanam-do during recent 3 years, according to age, time(year), sex, disease, medical instruments, insurance, living condition... etc and studied statistical researches. Result: Almost all patients who visited an oriental medical office in a sub-health center were in 50, 60s. The number of patients were on the decrease. The number of female patients was 2.4 times more than the number of male patients. The most diseases of patients in sub-health center were diseases in connection with bones and sinews system. Generally, medical instruments depended on acupuncture. Conclusion; These results provide actual informations about condition of oriental medical office in Sub-health Center. Oriental medical doctors and offices of sub-health center are supposed to contribute to society, however essentially many problems exist. Public medical doctors of oriental medicine and local administration must renew their efforts for health of people in farming and fishing villages.

  • PDF

Indoor to Outdoor Ratio of Fine Particulate Matter by Time of the Day in House According to Time-activity Patterns (시간활동양상에 따른 주택의 시간대별 실내·실외 초미세먼지 농도비)

  • Park, Jinhyeon;Kim, Eunchae;Choe, Youngtae;Ryu, Hyoensu;Kim, Sunshin;Woo, Byung Lyul;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.504-512
    • /
    • 2020
  • Objective: The purpose of this study was to evaluate the indoor to outdoor ratio (I/O ratio) of time activity patterns affecting PM2.5 concentrations in homes in Korea through a simulation. Methods: The time activity patterns of homemakers were analyzed based on the 'Time-Use Survey' data of the National Statistical Office in 2014. From September 30 to October 2, 2019, the experimenter lived in multifamily housing located in Guro-gu, Seoul. The I/O ratio of PM2.5 concentration was measured by installing sensor-based instruments. Results: The average indoor and outdoor PM2.5 concentrations during the three days were 33.1±48.9 and 45.9±25.3 ㎍/㎥, respectively. The average I/O ratio was 0.75±0.60. The indoor concentration tended to increase when PM2.5 source activity such cooking and cleaning was present and outdoor PM2.5 was supplied through ventilation. Conclusions: This study could be used as basic data for estimating indoor PM2.5 concentrations with personal activity pattern and weather conditions using outdoor concentrations.