• Title/Summary/Keyword: Synoptic environment

Search Result 123, Processing Time 0.023 seconds

Impact of Wind Profiler Data Assimilation on Wind Field Assessment over Coastal Areas

  • Park, Soon-Young;Lee, Hwa-Woon;Lee, Soon-Hwan;Kim, Dong-Hyeok
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.198-210
    • /
    • 2010
  • Precise analysis of local winds for the prediction of atmospheric phenomena in the planetary boundary layer is extremely important. In this study, wind profiler data with fine time resolution and density in the lower troposphere were used to improve the performance of a numerical atmospheric model of a complex coastal area. Three-dimensional variational data assimilation (3DVAR) was used to assimilate profiler data. Two experiments were conducted to determine the effects of the profiler data on model results. First, we performed an observing system experiment. Second, we implemented a sensitivity test of data assimilation intervals to extend the advantages of the profiler to data assimilation. The lowest errors were observed when using both radio sonde and profiler data to interpret vertical and surface observation data. The sensitivity to the assimilation interval differed according to the synoptic conditions when the focus was on the surface results. The sensitivity to the weak synoptic effect was much larger than to the strong synoptic effect. The hourly-assimilated case showed the lowest root mean square error (RMSE, 1.62 m/s) and highest index of agreement (IOA, 0.82) under weak synoptic conditions, whereas the statistics in the 1, 3, and 6 hourly-assimilated cases were similar under strong synoptic conditions. This indicates that the profiler data better represent complex local circulation in the model with high time and vertical resolution, particularly when the synoptic effect is weak.

Characteristics of Ozone Advection in Vertical Observation Analysis Around Complex Coastal Area (연직관측자료를 통한 복잡 연안지역의 오존 이류특성)

  • Lee, Hwa-Woon;Park, Soon-Young;Lee, Soon-Hwan;Leem, Heon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.57-74
    • /
    • 2009
  • In order to clarify the vertical ozone distribution in planetary boundary layer of coastal area with complex terrain, an observation campaign was carried out around Gwangyang Bay with dense pollutant emission sources during two days from June, 4 2007. For this observation are Radiosonde, SODAR(SOnic Detection And Ranging) and Tethered ozone sonde were employed. The surface meteorological and photochemical observation data provided by AWS (Automatic Weather System) and AQMS (Air Quality Monitoring System) were also applied for analysis. Synoptic condition is strongly associated with lower level ozone distribution in complex terrain coastal area. Since mesoscale circulation induced by difference of characteristics of land and sea and orographic forcing is predominant under calm synoptic condition, vertical distribution of ozone is complicate and vertical ozone concentration greatly fluctuated. However in second day when synoptic influence become strong, ozone concentration in lower levels is vertically uniform regardless of observation level. This results in vertical observation indicates that vertical ozone distribution is often determined by synoptic condition and also affects surface ozone concentration.

Change of Synoptic Climatology Associated with the Variation of Summer Rainfall Amount over the Korean Peninsula Around 1993/1994 (1993/1994년을 기점으로 나타난 한반도 여름철 강수량 변동의 종관기후학적 원인)

  • Kim, Jae-Hoon;Lee, Tae-Young
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.401-413
    • /
    • 2012
  • In this study, an investigation has been carried out to understand 1) temporal variation of rainfall amount in summer over south Korea during the 30-year period of 1979-2008 and 2) the relationship between the variation of rainfall amount and the change of large-scale monsoon circulation around 1993/1994 over East Asia. The analysis of rainfall amount is carried out separately for whole summer (June-August), climatological Changma period of 23 June-23 July, and August to consider variations within summer. To relate the variation of rainfall amount with the change of large-scale circulation, we have considered two 15-year periods of 1979-1993 and 1994-2008. This study has used observations at 58 stations in South Korea and NCEP-NCAR $2.5^{\circ}{\times}2.5^{\circ}$ reanalysis data. The major change in synoptic environment for the Changma period is characterized by the intensified anticyclone over Mongolia during 1994-2008, which results in a weak meridional oscillation of Changma front. As a result, rainfall amount for the Changma period and the frequency of extreme events have significantly increased after 1993/1994. A major change of synoptic environment for August is the significant westward extension of the western Pacific subtropical high, which allows not only more moisture transports but also stronger cyclonic circulation over the Korean peninsula. Rainfall amount for August and frequency of extreme events have also increased after 1993/1994. However, variability of rainfall amount is larger for August than that for the Changma period, with some years showing very dry August (monthly rainfall amount less than 150 mm).

Variation of PM10 Concentration in Seoul in Association with Synoptic Meteorological Conditions (종관기상장에 따른 서울 지역 미세먼지 농도 변화)

  • Lee, Jung-Young;Han, Jin-Seok;Kong, Boo-Joo;Hong, You-Deog;Lee, Jong-Hyun;Chung, Il-Rok
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.5
    • /
    • pp.351-361
    • /
    • 2007
  • To evaluate dominant synoptic classes which affect on $PM_{10}$ concentration in Seoul, 64 synoptic classes are classified from four seasons, 850hPa geopotential wind and lower level stability Index. In this study, we used air monitoring and meteorological data in Seoul for five years from 2001 to 2005. The results indicate that the highest occurrence frequency of synoptic class is under a strong westerly geopotential wind and stable lower atmosphere in spring. The highest $PM_{10}$ concentration of synoptic class is associated with a weak geopotential wind speed and high lower level stability. In that class, not only $PM_{10}$ but $SO_2$, $NO_2$ and CO concentrations are also higher than other classes. The analysis of spacial distribution of $PM_{10}$ concentration in each class are indicate that the influence of synoptic class are similar in the Metropolitan area in Korea. But $PM_{10}$ concentration in some areas in Kyoung-Gi are more higher than in Seoul. The relationship between $PM_{10}$ concentration and Meteorological indicator (relative humidity, temperature, surface wind speed) under same synoptic class is more correlative in Winter than other season.

Synoptic Meteorological Classification of the Days on Which Asthma Deaths Occurred Due to High PM10 Concentrations in Seoul (서울지역 미세먼지 고농도에 따른 천식사망자 사례일의 종관기상학적 분류)

  • Choi, Yun-Jeong;Park, Jong-Kil;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.159-172
    • /
    • 2017
  • Asthma deaths in Seoul peaked on the third, fifth, and second days after the PM concentration exceeded the daily average concentration standard. We classified the synoptic meteorological conditions, based on the days involving such cases, into three categories. Type 1 included the meteorological condition likely to cause high air pollution concentrations in the leeward region, the dominant wind direction of which is the northwest. Type 2 included the meteorological condition likely to cause high air pollution concentrations due to the weak wind velocity under stable atmospheric conditions. Type 3 was when the passage low atmospheric pressure and the expansion of high atmospheric pressure occurred at the rear, indicating a meteorological condition likely to cause high air pollution, in certain regions. Type 1 occurred 11 times, with high concentrations of over $100{\mu}g/m^3$ being observed in the southeastern part of Seoul. Type 2 occurred 24 times, often accompanied by a PM concentration of $100{\sim}400{\mu}g/m^3$. Type 3 occurred 11 times, and was accompanied by several days of yellow dust that accounted for the highest concentrations.

Investigation of the Assimilated Surface Wind Characteristics for the Evaluation of Wind Resources (풍력자원 평가를 위한 바람자료 동화 특성 평가)

  • Lee, Hwa-Woon;Kim, Min-Jung;Kim, Dong-Hyeuk;Kim, Hyun-Goo;Lee, Soon-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Wind energy has been recognized as one of the most important and fastest growing energy resources without emission of air pollutant. Thus, it is necessary to predict wind speed and direction accurately both in time and space toward the efficient usage of wind energy. Numerical simulation experiments using the Fifth-Generation Mesoscale Model (MM5) are carried out to clarify the impact of surface observation data assimilation on the estimation of wind energy resources. The EXP_Radius run was designed with respect to the radius of influence in the Four-Dimensional Data Assimilation (FDDA), and the EXP_Impact run was made by changing the nudging coefficient that determines the relative magnitude of the nudging term. The simulation period covers a clear-sky event on 3 - 5 June 2007 and another is on 2 - 4 December 2006. It is found that the simulated results are very sensitive to the radius of influence and nudging parameters in the FDDA. The further analysis of the results shows that the impact of the radius of influence tends to be stronger in weak synoptic flow episode than that in strong synoptic flows episode. The nudging factor is also sensitive to the intensity of the synoptic flows.

Effects of the Subgrid-Scale Orography Parameterization and High-Resolution Surface Data on the Simulated Wind Fields in the WRF Model under the Different Synoptic-Scale Environment (종관 환경 변화에 따른 아격자 산악모수화와 고해상도 지면 자료가 WRF 모델의 바람장 모의에 미치는 영향)

  • Lee, Hyeon-Ji;Kim, Ki-Byung;Lee, Junhong;Shin, Hyeyum Hailey;Chang, Eun-Chul;Lim, Jong-Myoung;Lim, Kyo-Sun Sunny
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.103-118
    • /
    • 2022
  • This study evaluates the simulated meteorological fields with a particular focus on the low-level wind, which plays an important role in air pollutants dispersion, under the varying synoptic environment. Additionally, the effects of subgrid-scale orography parameterization and improved topography/land-use data on the simulated low-level wind is investigated. The WRF model version 4.1.3 is utilized to simulate two cases that were affected by different synoptic environments. One case from 2 to 6 April 2012 presents the substantial low-level wind speed over the Korean peninsula where the synoptic environment is characterized by the baroclinic instability. The other case from 14 to 18 April 2012 presents the relatively weak low-level wind speed and distinct diurnal cycle of low-level meteorological fields. The control simulations of both cases represent the systematic overestimation of the low-level wind speed. The positive bias for the case under the baroclinic instability is considerably alleviated by applying the subgrid-scale orography parameterization. However, the improvement of wind speed for the other case showing relatively weak low-level wind speed is not significant. Applying the high-resolution topography and land-use data also improves the simulated wind speed by reducing the positive bias. Our analysis shows that the increased roughness length in the high-resolution topography and land-use data is the key contributor that reduces the simulated wind speed. The simulated wind direction is also improved with the high-resolution data for both cases. Overall, our study indicates that wind forecasts can be improved through the application of the subgrid-scale orography parameterization and high-resolution topography/land-use data.

The Effect of Surface and Vertical Observation Data Assimilation on the Horizontal and Vertical Flow Fields Depending on the Upper Wind Conditions (종관 특성에 따른 지상 및 연직 관측자료 동화가 수평 및 연직 확산장에 미치는 영향)

  • Choi, Hyun-Jung;Lee, Hwa-Woon;Kim, Min-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.177-189
    • /
    • 2010
  • In order to incorporate correctly the large or local scale circulation in an atmospheric model, a nudging term is introduced into the equation of motion. The MM5 model was used to assess the meteorological values differences in each case, during ozone episode days in Gwangyang bay. The main objective of this study is to investigate the effect of horizontal and vertical flow fields according to the surface and vertical observation data assimilation by upper wind conditions. Therefore, we carried out several numerical experiments with various parameterization methods for nudging coefficient considering the upper wind conditions (synoptic or asynoptic condition). Nudging considering the synoptic and asynoptic nudging coefficient does have a clear advantage over dynamic initialization, therefore appropriate limitation of these nudging coefficient values on its upper wind conditions is necessary before making an assessment. Obviously, under the weak synoptic wind, there was apparent advantage associated with nudging coefficient by the regional difference. The accuracy for the prediction of the meteorological values has been improved by applying the appropriate PBL (Planetary Boundary Layer) limitation of circulation.

Effects of Late Sea-breeze on Ozone Distributions in the Coastal Urban Area (연안도시지역 해풍지연이 오존분포에 미치는 영향)

  • 오인보;김유근;황미경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.345-360
    • /
    • 2004
  • The late sea-breeze and its impacts on ozone distributions were investigated during April to September from 1998 to 2002, in the Busan metropolitan area (including surrounding areas) using the surface ozone concentrations (obtained at 9 monitoring sites), local meteorological variables (obtained near the shore), together with synoptic data. The urban scale ozone concentration was also simulated using the MM5/UAM-V to better understand the role of late sea-breeze in Busan. The results from observation study showed that most of the late sea-breeze occurred when weak offshore synoptic flow (northwesterly) suppressed development of sea - breeze, and the ozone concentration level and frequencies exceeding ozone standard increased with the onset time of sea breeze. We also found that the late sea-breeze clearly induces relatively weak wind speed and high temperature during the daytime As a result it enhances the photochemical ozone accumulation and delays the occurrence time of the averaged maximum ozone concentrations. The results of simulation for high ozone episode (24 August, 2001) by MM5/UAM -V revealed that the late sea-breeze interacted with weak offshore synoptic wind can contribute significantly to high ozone concentration in the coastal urban area. The simulated horizontal and vertical distribution of ozone concentration indicated that ozone can be accumulated over the sea under stagnant condition and return to the land in the late afternoon with the sea breeze, suggesting both the relationship between late sea-breeze and recirculation and the importance of late sea -breeze effects influencing severe ozone pollution in Busan.

Synoptic Air Mass Classification Using Cluster Analysis and Relation to Daily Mortality in Seoul, South Korea (클러스터 분석을 통한 종관기단분류 및 서울에서의 일 사망률과의 관련성 연구)

  • Kim, Jiyoung;Lee, Dae-Geun;Choi, Byoung-Cheol;Park, Il-Soo
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 2007
  • In order to investigate the impacts of heat wave on human health, cluster analysis of meteorological elements (e.g., temperature, dewpoint, sea level pressure, visibility, cloud amount, and wind components) for identifying offensive synoptic air masses is employed. Meteorological data at Seoul during the past 30 years are used. The daily death data at Seoul are also employed. Occurrence frequency of heat waves which is defined by daily maximum temperature greater than the threshold temperature (i.e., $31.2^{\circ}C$) was analyzed. The result shows that the frequency and duration of heat waves at Seoul are increasing during the past 30 years. In addition, the increasing trend of the frequency and duration clearly appears in late spring and early autumn as well as summer. Factor analysis shows that 65.1% of the total variance can be explained by 4 components which are linearly independent. Eight clusters (or synoptic air masses) were classified and found to be optimal for representing the summertime air masses at Seoul, Korea. The results exhibit that cluster-mean values of meteorological variables of an offensive air mass (or cluster) are closely correlated with the observed and standardized deaths.