• Title/Summary/Keyword: Thermal low

Search Result 4,853, Processing Time 0.032 seconds

Effect of Carbide Forming Elements on Hardness and Linear Thermal Expansion Coefficient of Low Thermal Expansive Cast Irons (저 열팽창 주철의 경도향상 및 선팽창계수에 미치는 탄화물 형성원소의 영향)

  • Moon, Byung-Moon;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.1
    • /
    • pp.36-50
    • /
    • 1997
  • Invar-type austenitic cast irons are being used as low thermal expansive materials because of its good low thermal expansion characteristics and castability despite its low hardness. The effects of alloying elements such as Cr, Ti, V, and Mo on hardness and linear thermal expansion coefficient of the invar-type austenitic cast irons were investigated. A combined use of V and Mo addition was found to be the most effective for the improvement of hardness without causing an increase in the thermal expansion coefficient. With a combined addition of 4.6wt%V and 3.8wt%Mo, the hardness increased up to 180HB and the thermal expansion coefficient was kept at a relatively low value of $4.6{\times}10^{-6}/^{\circ}C$ in the temperature range from room to $250^{\circ}C$.

  • PDF

Thermoelastic analysis for a slab made of a thermal diode-like material

  • Darwish, Feras H.;Al-Nimr, Mohammad A.;Hatamleh, Mohammad I.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.645-659
    • /
    • 2015
  • This research investigates the thermoelastic transient behavior of a thermally loaded slab made of a thermal diode-like material which has two directional thermal conductivity values (low and high). Finite difference analysis is used to obtain the elastic response of the slab based on the temperature solutions. It is found that the rate of heat transfer through the thickness of the slab decreases with reducing the ratio between the low and high thermal conductivity values (R). In addition, reducing R makes the slab less responsive to the thermal load when heated from the direction associated with the low thermal conductivity value.

Dynamic Thermal Model of a Lighting System and its Thermal Influence within a Low Energy Building

  • Park, Herie;Lim, Dong-Young;Choi, Eun-Hyeok;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.9-15
    • /
    • 2014
  • This paper focuses on the heat gain of a lighting system, one of the most-used appliances in buildings, and its thermal effect within a low energy building. In this study, a dynamic thermal model of a lighting system is first established based on the first principle of thermodynamics. Then, thermal parameters of this model are estimated by experiments and an optimization process. Afterward, the obtained model of the system is validated by comparing simulation results to experimental one. Finally it is integrated into a low energy building model in order to quantify its thermal influence within a low energy building. As a result, heat flux of the lighting system, indoor temperature and heating energy demands of the building are obtained and compared with the results obtained by the conventional model of a lighting system. This paper helps to understand thermal dynamics of a lighting system and to further apply lighting systems for energy management of low energy buildings.

On the Thermal Low-pressure Onset using Analytical Model around Daegu in Summer (해석학적모델을 이용한 하계 대구지방의 열적저기압 형성에 관한 연구)

  • 김해동;정우식
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1133-1140
    • /
    • 2002
  • The growth and extent of the local pressure field at any point is of primary importance as it supplies the driving force for the local wind circulation which causes a medium-range transport of air pollutants. The local pressure field is produced by the variation of temperature in the lower layers of the atmosphere, and is called the thermal wave. The thermal wave is influenced by the difference in the diurnal variations between two regions with different surface condition, for example land and sea. This difference produces the land- and sea-breeze phenomenon, and brings corresponding variations in the form of the thermal wave. Daytime temperature over the inland area (Daegu) was higher than that of the coastal area (Busan). The temperature difference reached about 5~6$^{\circ}C$ in the late afternoon(30-31 May 1999). The low pressure system of Daegu was most fully developed at the time. In this study, we investigated the possibility of thermal low onset around Daegu in summer with an analytical model. The topography effect was neglected in the model. We could predict a thermal low-pressure of about 3.4hPa at Daegu with wide flat land surface, when the inland area is about 6K warmer than the coastal area temperature. The pressure decrease is somewhat less than the observed value(4~5 hPa).

Applications and Thermal Durability of Aluminium Titanate Ceramics Having High Thermal Shork Resistance

  • Kim, Ik-Jin;Kang, Won-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1993.05a
    • /
    • pp.118-119
    • /
    • 1993
  • Aluminium titanate (Al$_2$TiO$_{5}$) as structural ceramics is known as a low thermal exansion, a low thermal conductivity, a low Young's modulus, and excellent thermal shock resistant material. These properities allow for the testing as an insulating material in engines for portliner, piston bottom an turbo charger. However, those composites has low mechanical strength due to the presence of microcracks developed by the large difference in thermal expansion coefficients along crystallographic directions exceed the internal strength of material and its tendency to decompose into $Al_2$O$_3$ and TiO$_2$ at temperature below 130$0^{\circ}C$ limit however the application of aluminium titanate.e.

  • PDF

An Experimental Study on the Evaluation of Hydration Heat of Low Heat Concrete (in case of Belite rich Cement) (저발열 콘크리트 수화열 평가의 실험적 연구 (Belite rich 시멘트 중심))

  • 현석훈;박춘근;신영인;김용호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.352-357
    • /
    • 1996
  • In hardening massive concrete, the heat of hydation gives rise to considerable thermal gradientsand thermal stresses, which might cause early age cracking. This paper deals with the results of evaluation of hydration heat of low hear concrete, using Belite rich cement (low heat cement) and compared with OPC, slag added cement and fly ash addedcement. Result of evaluation of hydration are presented in this paper. The concrete made with Belite rich cement gets low temperature of center point and low thermal gradients between surface and center points.

  • PDF

Electrical Properties of Cu/Mn Alloy Resistor with Low Resistance and Thermal Stability (낮은 저항과 열안정성을 가지는 Cu/Mn 합금저항의 전기적 특성)

  • Kim, Eun Min;Kim, Sung Chul;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.365-369
    • /
    • 2016
  • In this paper, we fabricated Cu/Mn alloy shunt resistor with low resistance and thermal stability for use of mobile electronic devices. We designed metal alloy composed of copper (Cu) and manganese (Mn) to embody in low resistance and low TCR which are conflict each other. Cu allows high electrical conductivity and Mn serves thermal stability in this Cu/Mn alloy system. We confirmed the elemental composition of the designed metal alloy system by using energy dispersive X-ray (EDX) analysis. We obtained low resistance below $10m{\Omega}$ and low temperature coefficient of resistance (TCR) below $100ppm/^{\circ}C$ from the designed Cu/Mn alloy resistor. And in order to minimize resistance change caused by alternative frequency on circuit, shape design of the metal alloy wire is performed by rolling process. Finally, we conclude that design of the metal alloy system was successfully done by alloying Cu and 3 wt% of Mn, and the Cu/Mn alloy resistor has low resistance and thermal stability.

A Low- Viscousity, Highly Thermally Conductive Epoxy Molding Compound (EMC)

  • Bae, Jong-Woo;Kim, Won-Ho;Hwang, Seung-Chul;Choe, Young-Sun;Lee, Sang-Hyun
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.78-84
    • /
    • 2004
  • Advanced epoxy molding compounds (EMCs) should be considered to alleviate the thermal stress problems caused by low thermal conductivity and high elastic modulus of an EMC and by the mismatch of the coefficient of thermal expansion (CTE) between an EMC and the Si-wafer. Though A1N has some advantages, such as high thermal conductivity and mechanical strength, an A1N-filled EMC could not be applied to commercial products because of its low fluidity and high modules. To solve this problem, we used 2-$\mu\textrm{m}$ fused silica, which has low porosity and spherical shape, as a small size filler in the binary mixture of fillers. When the composition of the silica in the binary filler system reached 0.3, the fluidity of EMC was improved more than twofold and the mechanical strength was improved 1.5 times, relative to the 23-$\mu\textrm{m}$ A1N-filled EMC. In addition, the values of the elastic modules and the dielectric constant were reduced to 90%, although the thermal conductivity of EMC was reduced from 4.3 to 2.5 W/m-K, when compared with the 23-$\mu\textrm{m}$ A1N-filled EMC. Thus, the A1N/silica (7/3)-filled EMC effectively meets the requirements of an advanced electronic packaging material for commercial products, such as high thermal conductivity (more than 2 W/m-K), high fluidity, low elastic modules, low dielectric constant, and low CTE.

Small Camera Module for TEC-less Uncooled Thermal Image (TEC-less 비냉각 열영상 검출기용 소형카메라 모듈 개발)

  • Kim, Jong-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.97-103
    • /
    • 2017
  • Thermal imaging is mainly used in military equipment required for night observation. In particular, technologies of uncooled thermal imaging detectors are being developed as applied to low-cost night observation system. Many system integrators require different specifications of the uncooled thermal imaging camera but their development time is short. In this approach, EOSYSTEM has developed a small size, TEC-less uncooled thermal imaging camera module with $32{\times}32mm$ size and low power consumption. Both domestic detector and import detector are applied to the EOSYSTEM's thermal imaging camera module. The camera module contains efficient infrared image processing algorithms including : Temperature compensation non-uniformity correction, Bad/Dead pixel replacement, Column noise removal, Contrast/Edge enhancement algorithms providing stable and low residual non-uniformity infrared image.

LOW CYCLE THERMAL FATIGUE OF THE ENGINE EXHAUST MANIFOLD

  • Choi, B.L.;Chang, H.;Park, K.H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.297-302
    • /
    • 2004
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermo-mechanical cyclic loading. As a failure of the exhaust manifold is mainly caused by geometric constraints of the less expanded inlet flange and cylinder head, the analysis is based on the exhaust system model with three-dimensional temperature distribution and temperature dependent material properties. The result show that large compressive plastic deformations are generated at an elevated temperature of the exhaust manifold and tensile stresses are remained in several critical zones at a cold condition. From the repetition of these thermal shock cycles, maximum plastic strain range (0.454%) could be estimated by the stabilized stress-strain hysteresis loops. It is used to predict the low cycle thermal fatigue life of the exhaust manifold for the thermal shock test.