• Title/Summary/Keyword: Tianeptine

Search Result 4, Processing Time 0.015 seconds

Pharmacological interactions between intrathecal pregabalin plus tianeptine or clopidogrel in a rat model of neuropathic pain

  • Lee, Hyung Gon;Kim, Yeo Ok;Choi, Jeong Il;Han, Xue Hao;Shin, Yang Un;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • v.35 no.1
    • /
    • pp.59-65
    • /
    • 2022
  • Background: There is still unmet need in treating neuropathic pain and increasing awareness regarding the use of drug combinations to increase the effectiveness of treatment and reduce adverse effects in patients with neuropathic pain. Methods: This study was performed to determine the individual and combined effects of pregabalin, tianeptine, and clopidogrel in a rat model of neuropathic pain. The model was created by ligation of the L5-L6 spinal nerve in male Sprague-Dawley rats; mechanical allodynia was confirmed using von Frey filaments. Drugs were administered to the intrathecal space and mechanical allodynia was assessed; drug interactions were estimated by isobolographic or fixed-dose analyses. Results: Intrathecal pregabalin and tianeptine increased the mechanical withdrawal threshold in a dose-dependent manner, but intrathecal clopidogrel had little effect on the mechanical withdrawal threshold. An additive effect was noted between pregabalin and tianeptine, but not between pregabalin and clopidogrel. Conclusions: These findings suggest that intrathecal coadministration of pregabalin and tianeptine effectively attenuated mechanical allodynia in the rat model of neuropathic pain. Thus, pregabalin plus tianeptine may be a valid option to enhance the efficacy of neuropathic pain treatment.

Effects of tianeptine on symptoms of fibromyalgia via BDNF signaling in a fibromyalgia animal model

  • Lee, Hwayoung;Im, Jiyun;Won, Hansol;Nam, Wooyoung;Kim, Young Ock;Lee, Sang Won;Lee, Sanghyun;Cho, Ik-Hyun;Kim, Hyung-Ki;Kwon, Jun-Tack;Kim, Hak-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.361-370
    • /
    • 2017
  • Previous reports have suggested that physical and psychological stresses may trigger fibromyalgia (FM). Stress is an important risk factor in the development of depression and memory impairments. Antidepressants have been used to prevent stress-induced abnormal pain sensation. Among various antidepressants, tianeptine has been reported to be able to prevent neurodegeneration due to chronic stress and reverse decreases in hippocampal volume. To assess the possible effect of tianeptine on FM symptoms, we constructed a FM animal model induced by restraint stress with intermittent cold stress. All mice underwent nociceptive assays using electronic von Frey anesthesiometer and Hargreaves equipment. To assess the relationship between tianeptine and expression levels of brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and phosphorylated cAMP response element-binding protein (p-CREB), western blotting and immunohistochemistry analyses were performed. In behavioral analysis, nociception tests showed that pain threshold was significantly decreased in the FM group compared to that in the control group. Western blot and immunohistochemical analyses of medial prefrontal cortex (mPFC) and hippocampus showed downregulation of BDNF and p-CREB proteins in the FM group compared to the control group. However, tianeptine recovered these changes in behavioral tests and protein level. Therefore, this FM animal model might be useful for investigating mechanisms linking BDNF-CREB pathway and pain. Our results suggest that tianeptine might potentially have therapeutic efficacy for FM.

The effect of antipsychotics and antidepressants on the TREK2 channel (TREK2 채널에 대한 항정신성약물 및 항우울제의 효과)

  • Kwak, Ji-Yeon;Kim, Yang-Mi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2125-2132
    • /
    • 2012
  • Fluoxetine and tianeptine are commonly used as antidepressants (AD), and haloperidol and risperidone are widely used as antipsychotic drugs (APD), and it modulates various ion channels. TREK2 channel subfamily is very similar to physiological properties of TREK1 channel which can play important roles in the pathophysiology of mental disorders such as depression and schizophrenia, therefore, the pharmacological effect of psychiatric and depression drug on TREK2 channel may be similar to those of TREK1. Using the excised inside-out patch-clamp technique, we have examined the effects of APD and AD on cloned TREK2 channel expressed CHO cells. Fluoxetine (selective serotonin release inhibitor, SSRI) inhibited the TREK2 channel in a concentration-dependent manner ($IC_{50}$ $13{\mu}M$), whereas selective serotonin reuptake enhancer (SSRE) tianeptine increased without reducing the TREK2 channel activity. Haloperidol also inhibited the TREK2 channel in a concentration-dependent manner ($IC_{50}$ $44{\mu}M$), whereas even higher concentration ($100{\mu}M$) of risperidone did not completely inhibit on the activity. This study showed that TREK2 channel was preferentially blocked by fluoxetine rather than tianeptine, and inhibited by haloperidol rather than risperidone, suggesting differential effect of TREK2 channels by APD and AD may contribute to some mechanism of adverse side effects.

Beyond the SSRIs (SSRIs 이후의 항우울제)

  • Lee, Min Soo;Nam, Jong Won
    • Korean Journal of Biological Psychiatry
    • /
    • v.6 no.1
    • /
    • pp.34-40
    • /
    • 1999
  • New antidepressants have become available for clinical use in the 1990s. Before this decade, the drugs available to treat depression consisted essentially of monoamine oxidase inhibitors, tricyclic antidepressants, and lithium. Following the introduction of SSRIs, the options have expanded and now include SSRIs, nefazodone, venlafaxine, mirtazapine, reboxetine, tianeptine. Newer antidepressants possess a variety of pharmacological characteristics that are relevant to the choice of an antidepressant for clinical use. This review summarizes some of the major pharmacological characteristics among the drugs.

  • PDF