• Title/Summary/Keyword: Traditional Timber Building

Search Result 22, Processing Time 0.025 seconds

A Study on the Formation of Presbyterian Missionary Architecture in Andong Area (미국(美國) 북장로회(北長老會) 안동선교부(安東宣敎部) 건축형성과정(建築形成過程)에 대한 연구(硏究))

  • Dho, Sunboong;Han, Kyuyoung
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.2 no.2
    • /
    • pp.47-62
    • /
    • 2000
  • The purpose of this study is to analyze and explain the formation and character of presbyterian missionary architecture in Andong area from 1900 to 1945, which we may call "the modem architecture of Korea". I have surveyed and analyzed the 26 buildings. and so, the major findings of this study are as follows. Firstly, the phase of building is 1) buy the existing Korean traditional building and lot-a thatch roofed house. 2) modify the existing Korean traditional building-a thatch and tile roofed hose. 3) build the Korean style building-a thatch and tile roofed building. 4) build the Western style Building-a timber structured and zinc roofed building. 5) build the Western style Building- a masonry structured and zinc(or tile)roofed building. Secondly, the character of building is 1) In the Korean traditional building, the missionaries change the function for their purpose-office, church, school, hospital. they modify the existing Korean timber frame construction by introducing the material-brick, plaster, glass, Japanese style timber etc .. they live in the Korean existing residential area. 2) In the Western style building, the missionaries build the house according to their life style. they build the timber structured building-church, and the masonry (brick or stone)structured building such as a house, church, school and dormitory, and hospital. their building located on the hill depart from the existing Korean residential area.

  • PDF

Dynamic responses on traditional Chinese timber multi-story building with high platform base under earthquake excitations

  • Zhang, Xicheng;Ma, Hui;Zhao, Yanli;Zhao, Hongtie
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.331-345
    • /
    • 2020
  • The multi-story timber structure with high platform base is one of the important architectural types in the traditional Chinese buildings. To study the dynamic characteristics and seismic responses on this kind of traditional structure, the 3-D finite element models of Xi'an drum tower which included the high platform base, upper timber structure and whole structure was established considering the structural form and material performance parameters of the structure in this study. By the modal analysis, the main frequencies and mode shapes of this kind of traditional building were obtained and investigated. The three kinds of earthquake excitations included El-Centro wave, Taft wave and Lanzhou wave were separately imposed on the upper timber structure model and the overall structure model, and the seismic responses on the tops of columns were analyzed. The results of time history analysis show that the seismic response of the upper timber structure is obviously amplified by high platform base. After considering the effect of high platform base, the mean value on the lateral displacement increments of the top column in the overall structure is more than 20.478% and the increase of dynamic coefficients was all above 0.818 under the above three different earthquake excitations. Obviously, it shows that the existence of high platform base has a negative influence on the seismic responses of upper timber structure. And the high platform base will directly affect the safety of the upper timber structure. Therefore, the influence of high platform base on the dynamic response of its upper timber structure cannot be neglected.

Seismic performance of South Nias traditional timber houses: A priority ranking based condition assessment

  • Sodangi, Mahmoud;Kazmi, Zaheer Abbas
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.731-742
    • /
    • 2020
  • Due to incessant earthquakes, many historic South Nias traditional timber houses have been damaged while some still stand today. As Nias is part of an extremely active tectonic region and the buildings are getting older by day, it is essential that these unique houses are well maintained and functioning well. A post-earthquake condition assessment was conducted on 2 selected buildings; 'Building A' survived the seismic shakings while 'Building B' got severely damaged. The overall condition assessment of "Building A' was found out to be poor and the main structural members were not performing as intended. In 'Building B', the columns were not well anchored to the ground, no tie beams to tie the columns together, and eventually, the timber columns moved in various directions during the earthquake. The frequent earthquakes along with deterioration due to lack of proper maintenance program are responsible for the non-survival of the buildings. Thus, a process guideline for managing the maintenance of these buildings was proposed. This is necessary because managing the maintenance works could help to extend the life of the buildings and seek to avoid the need for potentially expensive and disruptive intervention works, which may damage the cultural significance of the buildings.

A Study on the Differences of the Timber Framework and Dimensions Among the Building Age of Folk Houses in Yeosu City (여수지역 재래민가(在來民家) 가구(架構)의 구성과 치수의 건립시기별 차이에 관한 연구)

  • Park, Chan;Kim, Jeong-Gyun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.22 no.4
    • /
    • pp.25-34
    • /
    • 2020
  • The study of the modern age period folk house is still insufficient in the Korean folk house study. The study subject had a tendency towards mainly on the plan in the field of the traditional folk house which had been studied relatively lively. We were going to grasp the formation and the actual situation of the folk house in this paper targeting at Yeosu city where the folk houses were left relatively a lot. Specifically, we examined it how the composition and dimensions of timber framework changed according to period. The division of period from before 1910 to the 1960s classified it at 4 periods on the basis of the sociocultural change. However, as a result of investigation analysis, the change of the composition and dimensions of timber framework was classified at 3 periods not 4 periods. The division of 3 periods is "traditional era", "modern age 1", and "modern age 2" not "traditional era", "modern age", and "contemporary age". The folk house group came as a common name for folk house without doing the division of period until now. There is a meaning in that this paper subdivided the period of the folk house group by the change of the timber framework technology. The timber framework is the effective index to investigate the actual condition because the change is difficult after building. Therefore, we examined it including the dimensions as well as the composition of timber framework in this paper comprehensively and systematically.

Air Tightness Performance of Residential Timber Frame Buildings

  • Kim, Hyun-Bae;Park, Joo-Saeng;Hong, Jung-Pyo;Oh, Jung-Kwon;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.89-100
    • /
    • 2014
  • Energy consumption statistics in 2005 from the Korea Energy Management Corporation show that building energy usage was about 24.2% of total domestic energy consumption, and 64% of total building energy usage was consumed by residential buildings. Thus, about 10% of total domestic energy consumption is due to the heating of residential buildings. Building energy can be calculated by the configuration of the building envelope and the rate of infiltration (the volume of the infiltration of outdoor air and the leakage of indoor air), and by doing so, the annual energy usage for heating and cooling. Therefore, air-tightness is an important factor in building energy conservation. This investigate air infiltration and various factors that decrease it in timber frame buildings and suggest ways to improve air-tightness for several structural types. Timber frame buildings can be classified into light frame, post and beam, and log house. Post and beam includes Han-ok (a Korean traditional building). Six light frame buildings, three post and beam buildings, one Korean traditional Han-ok and a log house were selected as specimens. Blower door tests were performed following ASTM E779-03. The light frame buildings showed the highest air-tightness, followed by post and beam structures, and last, log houses.

Numerical investigation on seismic behaviors of midrise special moment resistant frame retrofitted by timber-base bracings

  • Ainullah-Mirzazadah, Ainullah-Mirzazadah;Sabbagh-Yazdi, Saeed-Reza
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.83-100
    • /
    • 2022
  • Timber is one of the few natural, renewable building materials and glulam is a type of engineering wood product. In the present work, timber-based braces are applied for retrofitting midrise Special Moment Resisting Frame (SMRF) using two types of timber base braces (Timber base glulam, and hybrid Timber-Steel-BRB) as alternatives for retrofitting by traditional steel bracings. The improving effects of adding the bracings to the SMRF on seismic characteristics of the frame are evaluated using load-bearing capacity, energy dissipation, and story drifts of the frame. For evaluating the retrofitting effects on the seismic performance of SMRF, a five-story SMRF is considered unretofitted and retrofitted with steel-hollow structural section (HSS) brace, Glued Laminated Timber (Glulam) brace, and hybrid Timber-Steel BRB. Using OpenSees structural analyzer, the performance are investigated under pushover, cyclic, and incremental loading. Results showed that steel-HSS, timber base Glulam, and hybrid timber-steel BRB braces have more significant roles in energy dissipation, increasing stiffness, changing capacity curves, reducing inter-story drifts, and reducing the weight of the frames, compared by steel bracing. Results showed that Hybrid BRB counteract the negative post-yield stiffness, so their use is more beneficial on buildings where P-Delta effects are more critical. It is found that the repair costs of the buildings with hybrid BRB will be less due to lower residual drifts. As a result, timber steel-BRB has the best energy dissipation and seismic performance due to symmetrical and stable hysteresis curves of buckling restrained braces that can experience the same capacities in tension and compression.

Insulation Details and Energy Performance of Post-Beam Timber House for Insulation Standards (단열 기준에 따른 기둥-보 목조주택의 단열 상세 및 에너지 성능)

  • Kim, Sejong;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.876-883
    • /
    • 2015
  • Han-green project, which pursues Korean style post and beam timber house with traditional construction technique of Han-ok, has been carried out in KFRI (Korea Forest Research Institute) since 2006. Recently, the improvement of its building energy performance was studied with energy-saving elements. This study was conducted to provide the insulation details of building envelopes in a post-beam timber house for recent enhanced insulation standards and following effect on building energy performance. The level of thermal transmittance (U-value) values of building envelopes was composed of two stages: present Korean insulation standards and passive house. To evaluate building energy performance, the building airtightness values of two stages was ACH50 = $3.0h^{-1}$ for common domestic timber house constructed recently, and ACH50 = $0.6h^{-1}$ for passive house. Consequently, four cases of the building energy performance according to the combination of U-value with airtightness were evaluated. The test house for evaluation was located in Seoul and its energy performance was evaluated with CE3 commercial building energy simulation program. The result showed that enhanced insulation from level I to II reduced $14kWh/(m^2{\cdot}a)$ of annual heating energy demand regardless of airtightness.

A Study on the Planning Characteristics of Passive House by the Building Structural Types in Foreign Cases (해외 패시브하우스의 건축구조유형별 계획특성 연구)

  • Yang, Jung-Pil
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.15-20
    • /
    • 2013
  • The purpose of this study is to analyze the planning characteristics of passive house by the building structural types in foreign cases. The interests and demands about passive house have been increased, and various building structural types and design methods have been attempted for passive house in Korea. But domestic research results and development experiences about passive house were lack. The results of this study are as follows; First, in terms of energy performance, insulation performance, airtightness, there are not significant differences at the 95% confidence level by the structural types of passive house. Second, in terms of the types of insulation materials, there are significant differences at the 95% confidence level by the structural types of passive house. Third, in principle there is no need of traditional heating facility in passive houses, but in practice traditional heating facilities are used additionally in about half of survey cases for the comfort of occupants.

Evaluation of Anti-Stain Efficacy of Myoung-oil, Traditional Coating Agent (전통 마감제인 명유의 방미효력 평가)

  • Yoon, Sae-Min;Park, Yonggun;Jeon, Woo-Seok;Lee, Hyun-Mi;Hwang, Wonjoung;Nam, Kee Dal;Park, Jae-Gwan
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.505-510
    • /
    • 2020
  • In this study, the anti-stain effect of the Traditional Myoung-oil, which has been reproduced through traditional method, the Clean Myoung-oil, which was developed in an eco-friendly method through scientific analysis of Traditional Myoung-oil, and the perilla oil, which is the raw material of Myoung-oil and is currently used as a finishing agent when repairing wooden cultural properties was evaluated. As a result of the evaluation, perilla oil showed almost no anti-stain effect, whereas both types of Myoung-oil showed high anti-stain effect. However, it was confirmed that the anti-stain effect was significantly reduced after 4 weeks of exposure to the strain when Myoung-oil was diluted with terpene oil, a natural solvent. Thus, it was considered that the amount of treatment in the wood affected the anti-stain effect of Myoung-oil. In other words, in constructing wooden buildings, Myoung-o il is more suitable as a finishing agent to suppress mold growth than perilla oil. And, in order to increase the applicability of Myoung-oil, it is suggested that additional research on the optimal treatment amount and treatment method that can inhibit mold growth inhibition in outdoor environments is necessary.

Influence of Air-tightness on Heat Energy Performance in Post and Beam Building with Exposed Wood Frame

  • Kim, Hyun-Bae;Kim, Se-Jong;Oh, Jung-Kwon;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.319-326
    • /
    • 2012
  • Han-green building is one of the modernized Korean traditional buildings developed by Korea Forest Research Institute. This building was developed to increase the competitiveness of Korean traditional building using state-of-art technologies; hence Han-green building has the inherent characteristics of traditional building such as exposed wood frame in wall. Because of discontinuity in wall by the exposed wood frame, there is a concern on heat-air leaking in terms of energy performance. In this study, air-tightness of Han-green building was evaluated to investigate the influence of gaps between frames and in-fill walls. Blower door test was carried out to evaluate the air-tightness, and air-change rate (ACH50) was evaluated by averaging four set of pressurization and depressurization test. The air-change rate of Han-green house was 5.91 $h^{-1}$. To improve energy performance of Han-green house, thermal infrared images of Han-green house were taken in winter with heating to find out where the heat loss occurred. It was found that the building lost more heat through gaps between frames and in-fill walls rather than through other parts of this building. After covering all the gaps by taping, the blower door test was performed again, and the air-change rate was improved to 5.25 $h^{-1}$. From this analysis, it was concluded that the heated air can leak through the gaps between frames and walls. Therefore, when one designs the post and beam building with exposed frame, the detail design between frame and wall needs to be carefully dealt. However, Han-green building showed relatively high air-tightness comparing with other country research results.