• Title/Summary/Keyword: Type II collagen

Search Result 236, Processing Time 0.025 seconds

A STUDY ON THE EXPRESSION OF TYPE I AND TYPE II COLLAGEN GENES AND PROTEINS IN THE DEVELOPING HUMAN MANDIBLE

  • Kook, Yoon-Ah;Kim, Sang-Cheol;Kim, Eun-Cheol
    • The korean journal of orthodontics
    • /
    • v.25 no.6 s.53
    • /
    • pp.723-731
    • /
    • 1995
  • Type I and type II collagens are considered the major collagens of bone and cartilage respectively. Monitoring the patterns of those gene and protein expressions during development will provide a basis for the understanding of the normal and abnormal growths. This study was undertaken to investigate the expression of collagen genes and proteins involved in the developing human mandible. Fifty embryos and fetuses were studied with Alcian blue-PAS, Masson's Trichrome, reverse transcription polymerase chain reaction (RT-PCR), Western blot analysis, and Southern blot analysis. Our results showed that $pro-{\alpha}1(II)$ collagen gene expression begins in the 5th week. Type II collagen is synthesized in mesenchymal cells in advance: of overt chondrogenesis. The gene expression for type II collagen was highest during the appearance of Meckel's cartilage. There was a switch in collagen protein expression from type I to type II during the appearance stage of Meckel's cartilage. The distribution of the mRNA for type II collagen corresponded well with the pattern of type II collagen protein. The endochondral ossification was observed where there was direct replacement of cartilage by bone.

  • PDF

EXPRESSION OF TYPE I, TYPE II COLLAGEN ON DISTRACTION OSTEOGENESIS IN THE RABBIT MANDIBLE (가토 하악골에서 신연 골형성술시 제 I형 및 II형 교원질의 발현)

  • Kang, Dae-Sil;Jee, Yu-Jin;Song, Hyun-Chul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.261-270
    • /
    • 2004
  • The purpose of this experiment was to examine the histological changes and the pattern of expression of type I, II collagen in the elongated area by distraction osteogenesis in the rabbit mandible. Sixteen rabbits weighing 2.5kg-3kg were used for this experiment. Experimental group was distracted at the rate of 0.7mm, twice/day for 7days, and control group was only osteotomized. After 5 days latency, osteotomic site is distracted for 7days. Consolidation period is 28days. The animal was sacrificed at the 3rd, 7th, 14th, 28th day after the operation. The distracted bone was examined by histological analysis and RT-PCR analysis. The results were summarized as follows: 1. Experimental group was observed that the gaps between the distracted bone edges were occupied by new bone. 2. Expression of Type I collagen were detected throughout the experiment in both groups and Expression of Type I collagen were markedly increased during distraction and consolidation period in experimental group than control group. 3. Expression of Type II collagen were detected throughout the experiment in both groups and expression of Type II collagen were maintained at high level during distraction and consolidation period in experimental group than control group. From these results, in contrast to type II collagen, type I collagen seemed to be more expressed by mechanical stimuli during distraction and consolidation period. The predominent mechanism of new bone formation in the distraction gap was intramembranous bone formation, but some of the regenerated bone was formed by endochondral ossification.

Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development

  • Irawan, Vincent;Sung, Tzu-Cheng;Higuchi, Akon;Ikoma, Toshiyuki
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.673-697
    • /
    • 2018
  • BACKGROUND: Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications. METHODS: Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed. RESULTS: Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer. CONCLUSION: Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.

Suppressive Effects of Potato (Solanum tuberlosum) on Type II Collagen-Induced Arthritis in DBA/1J Mice

  • Choi, Eun-Mi
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.43-48
    • /
    • 2007
  • Collagen-induced arthritis (CIA) is a model for some types of human autoimmune rheumatoid arthritis (RA). In this study, we examined whether ethanol extract of potato (Solanum tuberosum) is efficacious against CIA in mice. Potato extracts (100 and 200 mg/kg) were orally administered to DBA/1J mice once daily for 49 day after initial immunization with type II collagen. Clinical assessment of disease and measurement of paw edema were conducted throughout the study. The production of CIA-related rheumatoid factor, anti-type II collagen antibody, and cytokines were examined in DBA/1J mice. Serum levels of AST, ALT, creatinine, and lipids were measured, and antioxidant enzyme activity in the spleen was also determined. The arthritis score and paw edema were markedly suppressed in the groups treated with potato extract. Levels of rheumatoid factor, anti-type II collagen antibody, interleukin (IL)-1, IL-6, LDL-cholesterol, and malondialdehyde in sera were also reduced by potato extract treatment. The activities of glutathione peroxidase and glutathione reductase were increased in the spleens of CIA mice treated with potato extract. These findings suggest that potato extract has suppressive effects on type II collagen-induced arthritis, an animal model for human RA.

형질전환생쥐에서 1.7 kb 및 3.1 kb bovine $\beta$-casein promoter가 human type II collagen 유전자의 발현조절에 관한 분석

  • 나루세겐지;양정희;권혁빈;유승권;최윤재;박창식;진동일
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.89-89
    • /
    • 2003
  • 본 연구에서는 1.7kb 및 3.1kb bovine $\beta$-casein promoter의 유전자 발현 조절능력을 알아보기 위해 1 7kb 및 3.1kb bovine $\beta$-casein promoter에 human Type II Collagen 유전자를 연결해서 DNA microinjection으로 형질전환생쥐를 생산하였다. 총 8마리의 founder생쥐(1.7kb collagen : 5마리, 3.1kb collagen 3마리)를 생산하였고 이 founder생쥐와 wild type 생쥐를 mating시켜서 $F_1 및 F_2$ 새끼를 얻었다. $F_1 및 F_2$새끼들에서 human Type II collagen 유전자의 transmission rate는 약 50%로 Mendel의 법칙에 따라 분리되어 안정적으로 유전자가 염색체에 정착되어 있음을 확인하였다. 이들 $F_1 및 F_2$새끼 중 암컷들을 임신시켜 분만 후 5-10 일경에 유선조직을 포함하여 여러 조직으로부터 RNA를 추출하여 Northern blotting 및 RT-PCR 방법을 이용하여 Type II collagen mRNA의 발현을 분석하였다. 유선에서의 발현은 1 7 kb 및 3.1 kb line별로 각각 1 line씩 발현되지 않았고, 그 외 line에서는 모두 발현되는 것으로 확인되었다. 유선에서의 Type II collagen mRNA 발형양은 1.7 kb 및 3.1 kb bovine $\beta$-casein promoter사이에서는 큰 차이를 나타내지 않았으나 1.7 kb promoter 형질전환생쥐의 경우 유선 이외 조직에서도 발현되는 양상을 나타내었고, 3.1kb promoter line에서는 유선특이적으로 발현시키는 양상을 나타내었다. 그러므로 bovine $\beta$-casein promoter의 1.7 kb와 3.1 kb 사이에 유선특이적 발현을 유도하는 조절부위가 있을 것으로 추정된다.

  • PDF

Chondrocyte Culture from Epiphyseal Plate and its Morphological Changes in Autologous Implants of Rabbit (토끼 성장판 연골세포 배양과 자가 이식편에서의 형태학적인 변화)

  • 양영철;정해일;최장석
    • Journal of Life Science
    • /
    • v.10 no.4
    • /
    • pp.408-421
    • /
    • 2000
  • We tried to establish the culture method of the chondrocyte isolated from the epiphyseal cartilage and to investigate morphological changes of chondrocyte cultured with enzyme-digested costal cartilage, the perichondrium and experimentally damaged meniscus of rabbit. De novo chondrocyte pellets were prepared from epiphyseal plates by culturing isolated epiphyseal chondrocytes from 4 week. old rabbits. We morphologically assessed the cartilage formation of the chondrocyte culture with enzyme-digested costal carilage, the perichondrial culture, the cultured chondrocytes transplants into experimentally damaged meniscus of rabbits, the perichondrial culture, the cultured chondrocytes transplants into experimentally damaged meniscus of rabbit. In the 24 days, the epiphyseal chondrocytes maintained the typical phenotypes of the partial nodular cell formation. The 30 days cryopreserved chondrocytes showed abnormal and irregular shape. In the type II collagen added culture, the chondrocytes showed expanded rough endoplasmic reticulum and small and large round-like vesicles of processes. In the type IV collagen added culture, the chondrocytes showed large perinuclear vaculoes and abundant well-developed rough endoplasmic reticulum of processes. In the culture with enzyme- digested costal cartilage and the perichondrial culture, the chondrocytes showed a few swelling rough endoplasmic reticulum and vacuoles. The cultured epiphyseal chondrocytes maintained typical phenotype and the chondrocytes were grown faster and maintained more typical phenotype in the type II and IV collagen added culture. The transformed chondrocytes secreted abundant extracellular matrix in the type II collagen added culture, and showed processes in the type IV collagen added culture. The perichondrial chondrocytes were grown faster and their implants were able to transplant. The cultured chondrocytes transplanted into experimentally damaged meniscus were adapted between the meniscus tissues. And the immunocyto-chemical reaction of the type II collagen of the chondrocytes were found to be maintained. The chondrocytes cultured cartilage. The chondrocytes secreted abundantly. The cultured chondrocytes transplanted into experimentally damaged meniscus changed immature cells into enlarged mature cells with extracellular secretion.

  • PDF

Induction of tolerance against the arthritogenic antigen with type-II collagen peptide-linked soluble MHC class II molecules

  • Park, Yoon-Kyung;Jung, Sundo;Park, Se-Ho
    • BMB Reports
    • /
    • v.49 no.6
    • /
    • pp.331-336
    • /
    • 2016
  • In murine collagen-induced arthritis (CIA), self-reactive T cells can recognize peptide antigens derived from type-II collagen (CII). Activation of T cells is an important mediator of autoimmune diseases. Thus, T cells have become a focal point of study to treat autoimmune diseases. In this study, we evaluated the efficacy of recombinant MHC class II molecules in the regulation of antigen-specific T cells by using a self peptide derived from CII (CII260-274; IAGFKGEQGPKGEPG) linked to mouseI-Aq in a murine CIA model. We found that recombinant I-Aq/CII260-274 molecules could be recognized by CII-specific T cells and inhibit the same T cells in vitro. Furthermore, the development of CIA in mice was successfully prevented by in vivo injection of recombinant I-Aq/CII260-274 molecules. Thus, treatment with recombinant soluble MHC class II molecules in complex with an immunodominant self-peptide might offer a potential therapeutic for chronic inflammation in autoimmune disease such as rheumatoid arthritis.

The Effect of Behavioral Response and Arthritic Tissue on Swimming Exercise and Achyranthes Radix Extracts in Type II Collagen-Induced Arthritic Rat (제 2형 콜라겐 유도 관절염에서 수중운동과 우슬추출물이 행동반응과 관절 조직에 미치는 영향)

  • Choi, Ki-Bok;Kim, Gye-Yeop;Nam, Ki-Won;Kim, Kyong-Yoon;Kim, Eun-Jung
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.2
    • /
    • pp.117-124
    • /
    • 2009
  • Purpose: This study examined the effects of swimming exercise and Achyranthes Radix extracts on the inflammatory and behavioral responses in type II collagen-induced arthritic rats for 28 days. Methods: Sprague-Dawley rats were allocated randomly to one of the following four groups: only type II collageninduced (group Ⅰ), application of swimming exercise after type II collagen-induced (group II), application of Achyranthes Radix ointment after type II collagen-induced (group III), application of swimming exercise and Achyranthes Radix ointment after type II collagen-induced (group IV). Arthritis was established in SD rats by an intradermal injection of Chick type II collagen plus incomplete Freund's adjuvant at the base of the tail of the animals. The swimming exercise program consisted of a 25 min swimming session/day with a load corresponding to 5.5% of the weight bearing, three days/week for four weeks. The Achyranthes Radix ointment (0.1g) was applied twice a day for five days. The changes in behavior, H & E stain, and cyclooxygenase-2 (COX-2) level in the knee joint were assessed. Results: The gross and histological examination, after RA induction showed reddening, edema and erythema. The H & E stain revealed the destruction of articular cartilage, bony erosion and the infiltration of inflammatory cells after RA induction. The mechanical allodynia test results were significantly higher in group I than in groups II, III and IV (p<0.01). The immunohistochemistrical response of COX-2 in the knee joint showed that groups II, III, IV had a lower response effect than group I. Conclusion: Swimming exercise training and Achyranthes Radix ointment decreased the inflammatory responses and enhanced the behavioral responses in the arthritic rats.

  • PDF

Influence of moxibustion on collagen-induced arthritis in mice

  • Fang, Jian-Qiao;Aoki, Eri;Seto, Akira;Yu, Ying;Kasahara, Takako;Hisamitsu, Tadashi
    • Journal of Pharmacopuncture
    • /
    • v.3 no.2
    • /
    • pp.27-40
    • /
    • 2000
  • The influence of moxibustion, a traditional Chinese medical treatment, on type II collagen-induced arthritis (CIA) was examined in DBA/1J mice in vivo. Mice were immunized intradermally twice at the 3-week interval with bovine type II collagen (C Il). The main incidence of arthritis started about on day 30 and lasted to day 60 after the first immunization. Moxibustion with three different regimens, was applied at the acupoint equivalent to GV 4 every other day. Moxibustion, from day 0 to day 30 after the first immunization, suppressed the onset and development of arthritis, as well as anti-collagen antibody level. Treatment with moxibustion, from the day 31 to day 60, also resulted in a significant inhibition of progression of arthritis and production of anti-C II antibody. Thirdly we examined the influence of moxibustion on the established arthritis. Moxibustion given from day 61 to day 120, significantly but mildly decreased the anti-C II antibody level in diseased mice, while the bone erosion and joint destruction were not affected. These results indicate that moxibustion could prevent the incidence and attenuates the development of murine CIA.

Effect of Hijikia fusiforme extracts on degenerative osteoarthritis in vitro and in vivo models

  • Kwon, Han Ol;Lee, Minhee;Kim, Ok-Kyung;Ha, Yejin;Jun, Woojin;Lee, Jeongmin
    • Nutrition Research and Practice
    • /
    • v.10 no.3
    • /
    • pp.265-273
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: The inhibitory effect of Hijikia fusiforme (HF) extracts on degenerative osteoarthritis was examined in primary cultured rat cartilage cells and a monosodium iodoacetate (MIA)-induced osteoarthritis rat model. MATERIALS/METHODS: In vitro, cell survival and the expression of matrix metalloproteinases (MMPs), collagen type I, collagen type II, aggrecan, and tissue inhibitor of metalloproteinases (TIMPs) was measured after $H_2O_2$ ($800{\mu}M$, 2 hr) treatment in primary chondrocytes. In vivo animal study, osteoarthritis was induced by intra-articular injection of MIA into knee joints of rats, and then RH500, HFE250 and HFE500 were administered orally once a day for 28 days. To determine the anti-inflammatory effects of HFE, nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) expression were measured. In addition, real-time PCR was performed to measure the genetic expression of MMPs, collagen type I, collagen type II, aggrecan, and TIMPs. RESULTS: In the in vitro assay, cell survival after $H_2O_2$ treatment was increased by HFE extract (20% EtOH). In addition, anabolic factors (genetic expression of collagen type I, II, and aggrecan) were increased by HFE extract (20% EtOH). However, the genetic expression of MMP-3 and 7, known as catabolic factors were significantly inhibited by treatment with HFE extract (20% EtOH). In the in vivo assay, anabolic factors (genetic expression of collagen type I, II, aggrecan, and TIMPs) were increased by oral administration of HFE extract. However, the genetic expression of MMP-3 and 7, known as catabolic factors, and production of NO and $PGE_2$ were significantly inhibited by treatment with oral administration of HFE extract. CONCLUSION: HFE extract inhibited articular cartilage degeneration through preventing extracellular matrix degradation and chondrocyte injury.