• Title/Summary/Keyword: Underground mine openings

Search Result 19, Processing Time 0.024 seconds

Underground Mine Design and Stability Analysis at a Limestone Mine (석회석광산의 갱내채광설계 및 안정성평가)

  • Koo, Chung-Mo;Jeon, Seok-Won;Lee, In-Woo
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.243-251
    • /
    • 2008
  • Recently, the mining methods are changing from surface mining to underground mining because of the increment of the environmental issues and legal regulations. Therefore, the stability of underground openings is a major concern for the safety and productivity of mining operations. In this paper, a survey of structural geology and discontinuities were carried out at a limestone mine. The relevant mechanical properties of rocks were determined by the laboratory tests and rock mass classifications (RMR and Q-system) for the mine design and input data for the stability analysis. The dimensions of unsupported span for underground openings and pillar were decided based on the RMR values of rock mass classifications. The stability analysis for the suggested mine design was examined through the empirical methods (stability graph method and critical span curve) and 3-D numerical analysis (Visual-FEA).

Stability Analysis for Mine Openings by a Three Dimensional Boundary Element Method-BEAP3D (三次元 境界要素法 BEAP3D에 의한 採掘空洞 安定性 評價)

  • 정소걸;김임호;조영도
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.118-129
    • /
    • 1998
  • A three dimensional boundary element method-BEAP3D was applied to the stability analysis of the mine openings not only to improve the stability during mining operations but also to serve the evaluation of the mine openings for further utilization. Stability analysis on the stability of the room-and-pillar stopes underneath of the old mine openings and the openings to be created by the newly proposed sublevel stoping method at the Nowhado Pyrophyllite Mine, showed that rock mass around the old and new stopes would be stable. Six stopes of a sublevel stoping designed for the Choongmu Limestone Quarry would be stable, too. A sublevel stoping method consisting of six stopes was similarly suggested for the Keumpyung Quartzite Mine. The stability can be guaranteed through out six stopes. Since mining starts from the bottom 1st sublevel to the uppermost sublevel, the safety of the stopes will improve together with the mining process. It would highly be recommended to investigate in-situ rock properties and the rock stresses for future studies. Even though the rock around the uppermost part and bottom of all the stopes have a very high factor of safety, spot reinforcements such as rock bolting would be recommended to mitigate the intermediate and minor principal stresses acting in a tensile mode.

  • PDF

Introduction of 3D Printing Technique applied for producing Physical Models of Underground Mine Openings (지하광산갱도의 물리모형 구현을 위한 3D프린팅 기술 적용사례)

  • Yoon, Dong-Ho;Fereshtenejad, Sayedalireza;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.69-76
    • /
    • 2017
  • Physical models of underground mines are very useful to the design of mine openings and the management of work progress of mining companies as well as to consulting. Even though 3D image realization techniques for mine openings have already been developed by various companies the physical models are still widely used because they can provide better understanding without sophisticated equipments for the most of people. Conventional materials for the physical models are paper and acryl which demand a lot of time and labor to make the model even with low precision and high cost. In this research, 3D printing technique is adopted to develop the physical model with relatively short time, low cost, and proper degree of precision. Finally the computer software "UMine2STL" was developed and verified by comparing the printed product with its design.

A Study on the Stability Analysis of Underground Mine using LIDAR (LIDAR를 활용한 지하광산의 안정성 분석에 관한 연구)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Jin, Yeon-Ho;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.406-421
    • /
    • 2017
  • This study describes a precise numerical analysis process by adopting the real image of mine openings obtained by LIDAR, which can produce a point cloud data by measuring the target surface numerically. Research area is a section of underground limestone mine which is used hybrid room-and-pillar method for improving the production rate. From the application of LIDAR to this section several results were deduced, that is, the central axis of upper and lower vertical safety pillars is distorted to the direction of NW and the section area of lower vertical safety pillar is $34m^2$ smaller than the designed area of $100m^2$. The results of precise measurement in geometrical shape of mine openings and precise simulation in numerical analysis confirms that LIDAR techniques can be suggested as a valuable tool for stability analysis in underground mine by configuring the mine opening shape.

Evaluation of Traffic Vibration Effect for Utilization of Abandoned Mine Openings (휴·폐광산 채굴 공동 활용을 위한 교통 진동 영향 평가)

  • Hyeon-Woo Lee;Seung-Joong Lee;Sung-Oong Choi
    • Tunnel and Underground Space
    • /
    • v.33 no.2
    • /
    • pp.95-107
    • /
    • 2023
  • In this study, the effect of repeated traffic vibration on the long-term stability of mine openings is analyzed for re-utilization of abandoned mine galleries. The research mine in this study is an underground limestone mine which is developed by room-and-pillar mining method, and a dynamic numerical analysis is performed assuming that the research mine will be utilized as a logistics warehouse. The actual traffic vibration generated by the mining vehicles is measured directly, and its waveform is used as input data for dynamic numerical analysis, As a results of dynamic numerical analysis, after 20,000 repetitions of traffic vibration, the mine openings is analyzed to be stable, but an increase in the maximum principal stress and an additional area of plastic zone are observed in the analysis section. As shown in the changes of displacement, volumetric strain, and maximum principal stress which are measured at the mine opening walls. It is confirmed that if the repeated traffic vibration is continuously applied, the instability of the mine openings can be increased. Authors expect that the results of this study can be used as a reference for basic study on utilization of abandoned mine.

Stability Assessment of Underground Limestone Mine Openings by Stability Graph Method (Stability graph method에 의한 석회석 지하채굴 공동의 안정성 평가)

  • Sunwoo Choon;Jung Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.369-377
    • /
    • 2005
  • The stability of underground openings is a major concern for the safety and productivity of mining operations. Rock mass classification methods provide the basis of many empirical design methods as well as a basis for numerical analysis. Of the many factors which influence the stability of openings, the span of the opening for a given rock mass condition provides an important parameter of design. In this paper, the critical span curves proposed by Lang, the Mathews stability graph method and the modified critical span curve suggested by the authors have been assessed. The modified critical span curve was proposed by using Mathews stability graph method. The modified critical span curve by the author have been used to assess the stability of underground openings in several limestone mines.

A Fundamental Study on Backfilling and Monitoring System for Stability of Underground Mine Openings (채굴공동의 안정성 유지를 위한 채움재의 충전과 계측시스템 구축에 관한 기초연구요)

  • Kim, Byung-Ryeol;Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.407-424
    • /
    • 2019
  • To prevent possible accidents by surface subsidence, backfilling operation is known to be one of the most effective methods for ensuring the long-term ground stability because it can eliminate fundamentally the origin of underground mine opening collapse. Also, for effective backfilling of underground mine opening, it is necessary to keep monitoring of backfilled mine opening for analyzing several factors such as filling effect with change of backfill material and characteristics of backfill material. Therefore, in this study, a monitoring system which consists of measuring device and software program has developed to examine the performance of backfilling operation and verify to field applicability to underground mine. Sensors for measuring device have been selected through study of recent research papers and mock-up test has been performed to verify the system compliance. Also, monitoring result of the mock-up test compared to case studies in some countries. From monitoring result fo the mock-up test compared to case studies in some countries, consequently, it was concluded that the developed real-time monitoring system had ensured filed applicability in the underground mine.

Review on Design of Underground Mine Openings in Korea and Overseas (국내외 지하광산 갱도설계 현황에 대한 고찰)

  • Yoon, Dong-Ho;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.30-37
    • /
    • 2019
  • Some leading countries in mining have a very quantitative guideline for underground mine opening design which is useful to minimize mine hazards such as rockfall and collapse. Those hazards sometimes can cause a huge damage on human life and property in the mines. Construction guidelines of underground mines in Korea consist of qualitative and general expressions although the workers' safety rules and guides are well provided. Recently, mining operations in Korea are going underground due to the environmental regulations and resource depletion at shallow depth, and therefore there is a growing demand on a specialized and systematic guideline for mine opening design securing the underground stability. In this paper, current status of mining industry, research trends, and mining guidelines in Korea and overseas have been reviewed to give an insight into developing a new Korean guideline for underground mine design.

Proposal of the Unsupported Span of Openings in the Domestic Underground Limestone Mines (국내 지하 석회석광산 갱도의 무지보 폭을 위한 제안)

  • SUNWOO, Choon
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.358-371
    • /
    • 2018
  • The stability of openings in the underground mine is major concern in the operation of mines that must ensure productivity and safety. Among many rock conditions affecting cavities stability, the width and height of the opening is an important design factor. In this paper, we consider to determine the maximum unsupported span of a opening in a limestone mine by using the Q system among several rock classification schemes. In order to determine the span of the unsupported opening in the limestone mine, rock mass classifications were carried out at over 200 sites in the underground limestone mines. The relationships by using the Q system and the stability graph proposed by Mathews to determine the maximum span of the unsupported opening were derived and compared. We propose a new classification method that combines GSI and RMR rock classification systems to make it easy to use in a field.

A Study on the Basic Geometry Analysis of Abandoned Underground Mine Tunnels in Korea and Advanced Measuring-Analysis Technology for Underground Mine Cavities (한국의 폐광산 지하 채굴갱도 기초형상 분석 및 개선된 광산 지하공동 측정·분석 기술 연구)

  • Kim, Soo-Lo;Park, Sung-Bin;Choi, Byung-Hee;Yun, Jung-Mann;Jeong, Gyo-Cheol
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.455-465
    • /
    • 2016
  • The collapse of underground mine development void for mineral resources can cause the subsidence of ground surface. In order to prevent the subsidence of ground, data such as maps or pictures of past mining site is important information for current mine reclamation works. In particular, mine subsidence management was based on mining maps and pictures. The process of the mining area surveys, safety evaluation, and ground reinforcement are normally possible with information such as maps and pictures in past mining. During the Japanese colonial period and 1960's, a lot of mines were developed in Korea indiscriminately. However, mining information at that time is limited to use. In the future, mining information will become even more rare. MIRECO intends to establish a realistic alternative solution. In this study, the basic numerical information of developed mine tunnels in Korea is statistically reviewed, and advanced underground cavity measuring technology was studied. 4,473 mine tunnel opening data of 1,784 abandoned mines in korea were collected and sorted. As a result of the analysis, the average value of small mine tunnel openings in Korea was 1.982 m in height and 1.959 m in width. The mean value of shape factor was analyzed as 0.485. The summary of these numerical mine data will be helpful for understanding and researching Korean abandoned mines. Therefore, the development of measurement technology for abandoned mine cavities and tunnels is expected to facilitate more effective mine subsidence management works in Korea.