• Title/Summary/Keyword: Unit Energy Production

Search Result 233, Processing Time 0.029 seconds

The Effectiveness of New Power Generation and Energy Demand Reduction to Achieve Greenhouse Gas Reduction Goals in Building Area

  • Park, Seong-Cheol;Kim, Hwan-Yong;Song, Young-Hak
    • Architectural research
    • /
    • v.18 no.2
    • /
    • pp.59-64
    • /
    • 2016
  • Since the massive power outages that hit across the nation in September 2011, a growing imbalance between energy supply and demand has led to a severe backup power shortage. To overcome the energy crisis which is annually repeated, a policy change for deriving energy supply from renewable energy sources and a demand reduction strategy has become essential. Buildings account for 18% of total energy consumption and have great potential for energy efficiency improvements; it is an area considered to be a highly effective target for reducing energy demand by improving buildings' energy efficiency. In this regard, retrofitting buildings to promoting environmental conservation and energy reduction through the reuse of existing buildings can be very effective and essential for reducing maintenance costs and increasing economic output through energy savings. In this study, we compared the energy reduction efficiency of national power energy consumption by unit production volume based on thermal power generation, renewable energy power generation, and initial and operating costs for a building retrofit. The unit production was found to be 13,181GWh/trillion won for bituminous coal-fired power generation, and 5,395GWh/trillion won for LNG power generation, implying that LNG power generation seemed to be disadvantageous in terms of unit production compared to bituminous coal-fired power generation, which was attributable to a difference in unit production price. The unit production from green retrofitting increased to 38,121GWh/trillion won due to the reduced energy consumption and benefits of greenhouse gas reduction costs. Renewable energy producing no greenhouse gas emissions during power generation and showed the highest unit production of 75,638GWh/trillion won, about 5.74 times more effective than bituminous coal-fired power generation.

Techno-Economic Analysis of Green Hydrogen Production System Based on Renewable Energy Sources (재생에너지 기반 그린 수소 생산 시스템의 기술 경제성 분석)

  • PARK, JOUNGHO;KIM, CHANG-HEE;CHO, HYUN-SEOK;KIM, SANG-KYUNG;CHO, WON-CHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.337-344
    • /
    • 2020
  • Worldwide, there is a significant surge in the efforts for addressing the issue of global warming; the use of renewable energy is one of the solutions proposed to mitigate global warming. However, severe volatility is a critical disadvantage, and thus, power-to-gas technology is considered one of best solutions for energy storage. Hydrogen is a popular candidate from the perspective of both environment and economics. Accordingly, a hydrogen production system based on renewable energy sources is developed, and the economics of the system are assessed. The result of the base case shows that the unit cost of hydrogen production would be 6,415 won/kg H2, with a hydrogen production plant based on a 100 MW akaline electrolyzer and 25% operation rate, considering renewable energy sources with no electricity cost payment. Sensitivity study results show that the range of hydrogen unit cost efficiency can be 2,293 to 6,984 Won/kg H2, depending on the efficiency and unit cost of the electrolyzer. In case of electrolyzer operation rate and electricity unit cost, sensitivity study results show that hydrogen unit cost is in the range 934-26,180 won/kg H2.

Study of Process for Offshore LNG Production (해상에서의 LNG 생산을 위한 공정 고찰)

  • Kim, Seung-Hyuk;Ha, Mun-Keun;Kim, Byung-Woo;Sadasivam, M.;Koo, Keun-Hoe
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.119-123
    • /
    • 2002
  • Liquefied Natural Gas(LNG) continues to attract modern gas industries as well as domestic markets as their main energy source in the recent years. This is mainly because LNG is inherently cleaner and more energy efficiency than other fuels. Offshore LNG production plant is of interest to many oil producing companies all over the world. This article discuss about the production process encountered while developing such a production facility. Typical offshore oil and gas processing required for oil stabilization and other optional units that can be added to the facilities. The production process can broadly be divided into five major units namely, (i) Oil Stabilization unit, (ii) Gas Treatment unit, (iii) Methane Recovery unit, (iv) Distillation unit and (v) LNG Liquefaction unit. The process simulation was carried out for each unit with a given wellhead composition. The topside facilities of offshore LNG production plant will be very similar to the process adopted in offshore processing platform along with the typical onshore LNG production plant. However, the process design problems associated with FPSO motion to be taken care of while developing floating LNG production plant.

  • PDF

The Development of Production Simulation Methodology by Optimization Technique and It's Application to Utility Expansion Planning (최적화 기법에 의한 발전시뮬레이션 방법론의 개발 및 전원확충계획 문제에의 적용)

  • Song, K.Y.;Oh, K.H.;Kim, Y.H.;Cha, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.793-796
    • /
    • 1996
  • This study proposes a new algorithm which performs a production simulation under various constraints and maintains computational efficiency. In order to consider the environmental and operational constraints, the proposed algorithm is based on optimization techniques formulated in LP form In the algorithm, "system characteristic constraints" reflect the system characteristics such as LDC shape, unit loading order and forced outage rate. By using the concept of Energy Invariance Property and two operational rules i.e. Compliance Rule for Emission Constraint, Compliance Rule for Limited Energy of Individual Unit, the number of system characteristic constraints is appreciably reduced. As a solution method of the optimization problem, the author uses Karmarkar's method which performs effectively in solving large scale LP problem. The efficiency of production simulation is meaningful when it is effectively used in power system planning. With the proposed production simulation algorithm, an optimal expansion planning model which can cope with operational constraints, environmental restriction, and various uncertainties is developed. This expansion planning model is applied to the long range planning schemes by WASP, and determines an optimal expansion scheme which considers the effect of supply interruption, load forecasting errors, multistates of unit operation, plural limited energy plants etc.

  • PDF

Study on the development of small-scale hydrogen production unit using steam reforming of natural gas (천연가스 개질 방식 중소형 고순도 수소제조 장치 개발 연구)

  • Seo, Dong-Joo;Chue, Kuck-Tack;Jung, Un-Ho;Park, Sang-Ho;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.720-722
    • /
    • 2009
  • This work is mainly focused at developing the hydrogen production unit with the capacity of 20 $Nm^3/h$ of high purity hydrogen. At present steam reforming of natural gas is the preferable method to produce hydrogen at the point of production cost. The developed hydrogen production unit composed of natural gas reformer and pressure swing adsorption system. To improve the thermal efficiency of steam reforming reactor, the internal heat recuperating structure was adopted. The heat contained in reformed gas which comes out of the catalytic beds recovered by reaction feed stream. These features of design reduce the fuel consumption into burner and the heat duty of external heat exchangers, such as feed pre-heater and steam generator. The production rate of natural gas reformer was 41.7 $Nm^3/h$ as a dryreformate basis. The composition of PSA feed gas was $H_2$ 78.26%, $CO_2$ 18.49%, CO 1.43% and $CH_4$ 1.85%. The integrated production unit can produce 21.1 $Nm^3/h$ of high-purity hydrogen (99.997%). The hydrogen production efficiency of the developed unit was more than 58% as an LHV basis.

  • PDF

The Comparative Analysis for the Economic Value of the Southern Part Cropping System Introducing New Bio-energy Crops. (영.호남 작부체계의 바이오에너지용 신품종 도입시 경제적 가치 비교분석)

  • Kim, Chung-Sil;Lee, Hyun-Keun
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.1
    • /
    • pp.1-17
    • /
    • 2009
  • The production of bio-energy crops is a major research project in the emphasizing the "low carbon green growth" strategy. For this, the possibility of the introduction of the new energy crops improve the agricultural income from fanning must be diagnosed. This study describes the level of agricultural income per unit area by cropping system based on the income of crops in the field. Especially, we have chosen the southern part attracting the attention in the possible area of the bio-energy crop production. This study consists of five chapters. Chapter I is the introduction. Chapter II is on the status of the southern part cropping system and the analysis of the economic value. Chapter III is on the economic value analysis introducing new bio-energy crops. Chapter IV is on the comparative analysis for the economic value of the croping system introducing new bio-energy crops. Chapter V is the conclusion.

  • PDF

The Probabilistic Production Simulation with Energy Limited Units Using the Mixture of Cumulants Approximation (에너지 제약을 갖는 발전기를 고려한 경우의 Mixture of Cumulants Approximation법에 의한 발전시뮬레이션에 관한 연구)

  • 송길영;김용하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1195-1202
    • /
    • 1991
  • This paper describes a newly developed method of production simulation by using the Mixture of Cumulant Approximation (MOCA). In this method, the load is modelled as random variable (r.v.) which can be interpreted in terms of partitioning the load into various categories. We can consider the load shape of multi-modal characteristics. The number of load category and demarcation points of each load category are calculated automatically by using interpolation and least square method. Each generating unit of a supply system is modelled as r.v. of unit outage capacity according to the number of unit outage subset. Since the computation burden of each subset's moments increases exponentially as units are convolved to the system, we further derive the specific recursive formulae. In simulating the energy limited units, hydro unit simulation is performed using Energy Invariance Property and the simulation of pumped storage unit is modelled as compulsory and economic operations. The proposed MOCA method is applide to the test systems and the results are compared with those of cumulant and Booth Baleriaux method. It is verified that the MOCA method is considerably reliable and stable both pathological and well behaved system.

Strategic Planning for Bioenergy Considering Biomass Availability in Rural Area (바이오매스 부존특성을 고려한 농촌지역 바이오에너지 보급전략)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.51-58
    • /
    • 2008
  • Unit costs for energy production in bioenergy facilities are dependent upon both fixed cost for facility construction and operational costs including biomass feedstock supply. With the increase of capacity, unit fixed cost could be decreased while supply cost tends to increase due to the longer transportation distance. It is desirable to take into account biomass availability in planning bioenergy facilities. A cumulative curve relationship was proposed to relate biomass availability and cumulative products of biomass amount and transportation distance. Optimum size of gasification facilities was affected by collection cost, biomass cumulative relationship. Based on biomass availability of Icheon-City, optimum sizes were about $400kW_{th}$ for gas production, and about $200kW_{el}$ for power generation. Unit cost of bioenergy production could be substantially reduced by reducing collection cost through supplying biomass from diverse sources including land development areas where significant amount of waste wood is generated. When planning bioenergy facilities, however, biomass availability and spatial distribution are key factors in determining the size of capacity.

Energy Efficiency Improvements in the Korean Industry (한국 제조업의 에너지효율 향상평가)

  • Park, Hi Chun
    • Environmental and Resource Economics Review
    • /
    • v.10 no.2
    • /
    • pp.135-159
    • /
    • 2001
  • This study analyses the energy consumption increase by using a physical production index (PPI) based decomposition method. The energy efficiency of the Korean industry deteriorated to a large extent in the 1992 to 1997 period. This outcome, however, does not contradict the result of a previous study that the physical energy intensities (measured by energy use per production unit) decreased in four Korean energy intensive industries such as steel, cement, petrochemical and pulp and paper in the same period. Although the physical energy intensities in four industries considered decreased significantly, the energy efficiency of the Korean industry deteriorated because the increase in the value-added production was smaller than that in the physical production except for the steel industry. This outcome suggests that the reduction in the physical energy intensity alone will not result in reducing the economic energy intensity, thereby reducing the increase in the energy consumption of the Korean industry. Therefore, it necessitates to restructure the Korean industry towards a higher value-added production and to strengthen energy efficiency improvement efforts in the Korean industry. As the overinvestment in the energy intensive industries caused a deep price fall of Korean products and a reduction of the value added of the Korean industry and with it an increase in the economic energy intensity, a decrease in this intensity will highly depend on reducing the overcapacity in the energy intensive industries which was partly responsible for the currency and economic crisis of 1997.

  • PDF

A Study on the Evaluation of Water Consumption in Electric Appliances using Water Footprint - Focusing on Washing Machine - (Water Footprint 개념을 이용한 가전제품의 수자원 사용량 산정 (세탁기를 중심으로))

  • Jo, Hyun-Jung;Kim, Woo-Ram;Park, Ji-Hyoung;Hwang, Young-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.691-697
    • /
    • 2011
  • In this study, by using the Water footprint technique, the water consumption by washing machines, which holds higher ranks in using water than any other electric appliances, was analyzed during their life cycle. The life cycle is defined as raw materials production step, manufacturing step, and using step. In raw materials production step, Input materials were researched by using LCI DB(Life Cycle Inventory Database) and the water consumption was calculated with consideration of approximately 65% Input materials which were based weight. In manufacturing step, the water consumption was calculated by the amount of energy used in assembly factories and components subcontractors and emission factor of energy. In using step, referring to guidelines on carbon footprint labeling, the life cycle is applied as 5 years for a washing machine and 218 cycles for annual bounds of usage. The water and power consumption for operating was calculated by referring to posted materials on the manufacture's websites. The water consumption by nation unit was calculated with the result of water consumption by a unit of washing machine. As a result, it shows that water consumption per life cycle s 110,105 kg/unit. The water consumption of each step is 90,495 kg/unit for using, 18,603 kg for raw materials production and 1,006 kg/unit for manufacturing, which apparently shows that the using step consume the most water resource. The water consumption by nation unit is 371,269,584tons in total based on 2006, 83,385,649 tons in both steps of raw material production and manufacturing, and 287,883,935 tons in using step.