• 제목/요약/키워드: Vascular reactivity

검색결과 47건 처리시간 0.025초

Moderate and Deep Hypothermia Produces Hyporesposiveness to Phenylephrine in Isolated Rat Aorta

  • Cho, Jun Woo;Lee, Chul Ho;Jang, Jae Seok;Kwon, Oh Choon;Roh, Woon Seok;Kim, Jung Eun
    • Journal of Chest Surgery
    • /
    • 제46권6호
    • /
    • pp.402-412
    • /
    • 2013
  • Background: Moderate and severe hypothermia with cardiopulmonary bypass during aortic surgery can cause some complications such as endothelial cell dysfunction or coagulation disorders. This study found out the difference of vascular reactivity by phenylephrine in moderate and severe hypothermia. Methods: Preserved aortic endothelium by excised rat thoracic aorta was sectioned, and then down the temperature rapidly to $25^{\circ}C$ by 15 minutes at $38^{\circ}C$ and then the vascular tension was measured. The vascular tension was also measured in rewarming at $25^{\circ}C$ for temperatures up to $38^{\circ}C$. To investigate the mechanism of the changes in vascular tension on hypothermia, NG-nitro-L-arginine methyl esther (L-NAME) and indomethacin administered 30 minutes before the phenylephrine administration. And to find out the hypothermic effect can persist after rewarming, endothelium intact vessel and endothelium denuded vessel exposed to hypothermia. The bradykinin dose-response curve was obtained for ascertainment whether endothelium-dependent hyperpolarization factor involves decreasing the phenylnephrine vascular reactivity on hypothermia. Results: Fifteen minutes of the moderate hypothermia blocked the maximum contractile response of phenylephrine about 95%. The vasorelaxation induced by hypothermia was significantly reduced with L-NAME and indomethacin administration together. There was a significant decreasing in phenylephrine susceptibility and maximum contractility after 2 hours rewarming from moderate and severe hypothermia in the endothelium intact vessel compared with contrast group. Conclusion: The vasoplegic syndrome after cardiac surgery might be caused by hypothermia when considering the vascular reactivity to phenylephrine was decreased in the endothelium-dependent mechanism.

Vascular dysfunction in patients with type 2 diabetes mellitus

  • Ekta, Khandelwal;Mahaveer Jain;Sumeet Tripathi
    • Annals of Clinical Neurophysiology
    • /
    • 제25권1호
    • /
    • pp.32-37
    • /
    • 2023
  • Background: Type 2 diabetic mellitus (T2DM) is an emerging global pandemic which is associated with lots of co-morbidities and reported vascular dysfunctions. T2DM associated vascular dysfunctions leads to vasculopathy in the form of altered peripheral vascular dynamics. Cold stress test (CST) is a reliable sympathetic reactivity test used for assessing vascular dysfunctions. In this study we are trying to quantify vascular dysfunctions in T2DM patients non invasively by various parameters of photoplethysmography (PPG) of cold stress test. Methods: Case control study had done in referral health center AIIMS, Raipur. Parameters are recorded by finger-PPG before, during and after CST (1 min) in 2 groups, control (n = 20 healthy volunteers) and case (n = 20 diagnosed T2DM patients). Results: Due to cold stress, PPG parameter peak amplitude was significantly decreased in both healthy and T2DM groups (p <0.001 and p <0.001, respectively). However, recovery trend of amplitude was significantly slow in T2DM compared to healthy subjects. Another PPG parameter peak to peak interval was significantly higher in healthy group compared to T2DM patients. Conclusions: This study showed that T2DM patients has significant deranged pulse volume parameters like amplitude and peak to peak interval can be used to objectively quantify the vasculopathy in T2DM patients by using sympathetic reactivity to cold stress.

Aortic Remodelling in Chronic Nicotine-Administered Rat

  • Zainalabidin, Satirah;Budin, Siti Balkis;Ramalingam, Anand;Lim, Yi Cheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권5호
    • /
    • pp.411-418
    • /
    • 2014
  • Vascular remodelling is an adaptive mechanism, which counteracts pressure changes in blood circulation. Nicotine content in cigarette increases the risk of hypertension. The exact relationship between nicotine and vascular remodelling still remain unknown. Current study was aimed to determine the effect of clinically relevant dosage of nicotine (equivalent to light smoker) on aortic reactivity, oxidative stress markers and histomorphological changes. Twelve age-matched male Sprague-Dawley rats were randomly divided into two groups, i.e.: normal saline as control or 0.6 mg/kg nicotine for 28 days (i.p., n=6 per group). On day-29, the rats were sacrificed and the thoracic aorta was dissected immediately for further studies. Mean arterial pressure (MAP) and pulse pressure (PP) of nicotine-treated vs. control were significantly increased (p<0.05). Nicotine-treated group showed significant (p<0.05) increase tunica media thickness, and decrease in lumen diameter, suggesting vascular remodelling which lead to prior hypertension state. The phenylephrine (PE)-induced contractile response in nicotine group was significantly higher than control group ($ED_{50}=1.44{\times}10^5M$ vs. $4.9{\times}10^6M$) (p<0.05~0.001). However, nicotine-treated rat showed significantly lower endothelium-dependent relaxation response to acetylcholine (ACh) than in control group ($ED_{50}=6.17{\times}10^7M$ vs. $2.82{\times}10^7M$) (p<0.05), indicating loss of primary vascular function. Malondialdehyde (MDA), a lipid peroxidation marker was significantly higher in nicotine group. Superoxide dismutase (SOD) enzymatic activity and glutathione (GSH) were all reduced in nicotine group (p<0.05) vs. control, suggesting nicotine induces oxidative imbalance. In short, chronic nicotine administration impaired aortic reactivity, probably via redox imbalance and vascular remodelling mechanism.

Oxytocin-induced endothelial nitric oxide dependent vasorelaxation and ERK1/2-mediated vasoconstriction in the rat aorta

  • Xu, Qian;Zhuo, Kunping;Zhang, Xiaotian;Zhang, Yaoxia;Xue, Jiaojiao;Zhou, Ming-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권4호
    • /
    • pp.255-262
    • /
    • 2022
  • Oxytocin is a neuropeptide produced primarily in the hypothalamus and plays an important role in the regulation of mammalian birth and lactation. It has been shown that oxytocin has important cardiovascular protective effects. Here we investigated the effects of oxytocin on vascular reactivity and underlying the mechanisms in human umbilical vein endothelial cells (HUVECs) in vitro and in rat aorta ex vivo. Oxytocin increased phospho-eNOS (Ser 1177) and phospho-Akt (Ser 473) expression in HUVECs in vitro and the aorta of rat ex vivo. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited oxytocin-induced Akt and eNOS phosphorylation. In the rat aortic rings, oxytocin induced a biphasic vascular reactivity: oxytocin at low dose (10-9-10-8 M) initiated a vasorelaxation followed by a vasoconstriction at high dose (10-7 M). L-NAME (a nitric oxide synthase inhibitor), endothelium removal or wortmannin abolished oxytocin-induced vasorelaxation, and slightly enhanced oxytocin-induced vasoconstriction. Atosiban, an oxytocin/vasopressin 1a receptor inhibitor, totally blocked oxytocin-induced relaxation and vasoconstriction. PD98059 (ERK1/2 inhibitor) partially inhibited oxytocin-induced vasoconstriction. Oxytocin also increased aortic phospho-ERK1/2 expression, which was reduced by either atosiban or PD98059, suggesting that oxytocin-induced vasoconstriction was partially mediated by oxytocin/V1aR activation of ERK1/2. The present study demonstrates that oxytocin can activate different signaling pathways to cause vasorelaxation or vasoconstriction. Oxytocin stimulation of PI3K/eNOS-derived nitric oxide may participate in maintenance of cardiovascular homeostasis, and different vascular reactivities to low or high dose of oxytocin suggest that oxytocin may have different regulatory effects on vascular tone under physiological or pathophysiological conditions.

혈관 반응성에 대한 Cyclooxygenase 억제제 효과와 Cyclooxygenase 발현 변화 (Effects of Cyclooxygenase Inhibitors on Vascular Reactivity and Alterations of Cyclooxygenase Expression)

  • 이기영;박진우;엄은아;강영진;이광윤;최형철
    • Journal of Yeungnam Medical Science
    • /
    • 제23권1호
    • /
    • pp.36-44
    • /
    • 2006
  • 진통과 해열작용을 가진 NSAIDs는 소화기계에 대한 부작용 때문에 COX-2 선택성 억제제로 대체되고 있다. 그러나 COX-2 선택적 억제제는 심혈관계에 대한 부작용이 보고되고 있어 혈관 평활근에 대한 직접적인 연구가 필요하다. 이에 본 연구에서는 혈관 반응성에 미치는 celecoxib와 aspirin, indomethacin의 영향을 비교 분석하였다. 또한 COX-1, COX-2 단백질 발현에 대한 indomethacin과 NO 공여제의 영향을 조사하였다. Phenylephrine 유발 수축반응에서 전처치 된celecoxib, indometacin, aspirin 순서로 혈관 반응성을 증가시켜, cyclooxygenase를 억제하면 혈관 수축성물질에 대한 반응성이 커질 수 있음을 나타낸다. 이중 cyclooxygenase에 대해 비가역적으로 강한 억제를 나타내는 aspirin이 제일 강한 효과를 나타내어 여기에 대한 연구는 더 필요할 것으로 생각된다. 혈관평활근 세포의 COX-2 단백질 발현은 indomethacin과 SNP, NOR-3 처치에 의해 증가되었으며, LPS를 이용하여 혈관염증을 유발 시키는 경우 혈관평활근 세포의 COX-2 단백질 발현이 증가되었고, 이 상태에서 SNP $100{\mu}M$ 전처치로 COX-2 단백질 발현을 감소되었으며, NOR-3 $100{\mu}M$은 COX-2 단백질 발현을 증가시켰다. LPS 유도 nitrite 생성에서 NOR-3는 SNP 보다 더 많은 nitrite를 생성시켰다. 이는 혈관의 수축반응에서 aspirin은 강한 상승작용을 유발하고, 혈관평활근 세포의 COX-2 발현은 NO 공여제, 혈관염증 유무에 따라 차이가 있는 것을 나타낸다.

  • PDF

Enhanced Expression of Inducible Nitric Oxide Synthase May Be Responsible for Altered Vascular Reactivity in Streptozotocin-induced Diabetic Rats

  • Jang, Jae-Kwon;Kang, Young-Jin;Seo, Han-Geuk;Seo, Sook-Jae;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권4호
    • /
    • pp.375-382
    • /
    • 1999
  • Growing evidence indicates that enhanced generation or actions of nitric oxide (NO) are implicated in the pathogenesis of hypertension in spontaneously hypertensive rats and diabetic nephropathy in streptozotocin (STZ)-induced diabetic rats. We investigated whether inducible nitric oxide synthase (iNOS) expression in STZ-induced diabetic rats is responsible for the alterations of vascular reactivity. Diabetic state was confirmed 28 days after injection of STZ (i.p) in rats by measuring blood glucose. In order to evaluate whether short term (4 weeks) diabetic state is related with altered vascular reactivity caused by iNOS expression, isometric tension experiments were performed. In addition, plasma nitrite/nitrate (NOx) levels and expression of iNOS in the lung and aorta of control and STZ-treated rats were compared by using Griess reagent and Western analysis, respectively. Results indicated that STZ-treated rats increased the maximal contractile response of the aorta to phenylephrine (PE), and high $K^+,$ while the sensitivity remained unaltered. Endothelium-dependent relaxation, but not SNP-mediated relaxation, was reduced in STZ-treated rats. Plasma nitrite/nitrates are significantly increased in STZ-treated rats compared to controls. The malondialdehyde (MDA) contents of liver, serum, and aorta of diabetic rats were also significantly increased. Furthermore, nitrotyrosine, a specific foot print of peroxynitrite, was significantly increased in endothelial cells and smooth muscle layers in STZ-induced diabetic aorta. Taken together, the present findings indicate that enhanced release of NO by iNOS along with increased lipid peroxidation in diabetic conditions may be responsible, at least in part, for the augmented contractility, possibly through the modification of endothelial integrity or ecNOS activity of endothelium in STZ-diabetic rat aorta.

  • PDF

Dehydroepiandrosterone(DHEA)의 투여에 의한 rat 흉대동맥의 반응성 변화 (Responsiveness of the Thoracic Aorta in Rats Treated with Dehydroepiandrosterone (DHEA))

  • 박관하
    • Biomolecules & Therapeutics
    • /
    • 제9권2호
    • /
    • pp.119-124
    • /
    • 2001
  • In order to determine the role of dehydroepiandrosterone (DHEA), the important sex-steroid hormone precursor, in vascular reactivity in rats, animals were treated for two weeks with DHEA or sex hormones, and the vascorelaxant and contractile responses of isolated aorta were examined. DHEA diminished the acetylcholine (ACh)-induced relaxation in female rats, while the drug was without effect in males. Testoterone lowered the vasorelaxant activity to ACh in either sex. 17$\beta$-Estradiol enhanced ACh-induced vasorelaxation in male rats, but this female sex hormone did not influence in females. In male rats, the androgen receptor antagonist flutamide also enhanced vasorelaxant action of ACh. When the male rat aorta was incubated in vitro with a nitric oxide (NO) synthase inhibitor L-NAME, phenylephrine-induced contraction was greatly potentiated in DHEA-pretreated rats compared to control ones. The present results suggest that DHEA stimulates mainly androgen in female, but both androgen and estrogen in male rats. The participation of NO In the modulation of vascular reactivity with pretreated DHEA was also considered.

  • PDF

자동차 경적소리에 대한 심리생리학적 반응 비교 (COMPARATIVE ANALYSIS OF PSYCHOPHYSIOLOGICAL REACTIVITY TO AUDITORY STIMULATION WITH AUTOMOBILE HORNS)

  • ;민윤기;손진훈;정인승
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1999년도 춘계학술발표논문집 논문집
    • /
    • pp.221-230
    • /
    • 1999
  • Automobile horn's psychoacoustic characteristic and significance as a anturalistic signal of danger makes it a valuable auditory stimulus to study such psychophysiological responses as startle, orienting and defense reactions. However, comparison and differentiation of physiological responses to commercially available horns is a complicated task due to small contrast of technical features of horns and influence of such processes as habituation on physiological outcome with increased number of auditory stimulation trials. In the study on 10 college students we performed comparative analysis of tonic and phasic reactivity of physiological responses mediated by autonomic nervous system in order to identify role of habituation and decrement of autonomic responsivity, as well as possibility o differentiate subjectively most and least preferred and subjectively more appropriate horns according to physiological manifestations. It was showed that electrodermal and cardiovascular reactivity have concurrent patterns of adaptation to repeated stimulation, namely skin conductance variables habituated, cardiac reactivity failed to show signs of habituation, while vascular component of response were facilitated demonstrating marked sensitization. Differentiation of Physiological responses to horns with respect to their subjective rating scores was possible, however electrodermal reactivity was effective only at the first block of trials, while phasic and tonic cardiovascular reactivity differentiate responses during whole course of experiment. There are discussed possible autonomic mechanisms involved in mediation of observed results.

  • PDF

Characterization of $ET_B$ Receptor-mediated Relaxation in Precontracted Mesenteric Artery from Streptozotocin-induced Diabetic Rats

  • Eom, Yang-Ki;Kim, Koan-Hoi;Rhim, Byung-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권5호
    • /
    • pp.305-314
    • /
    • 2005
  • Diabetes mellitus is associated with vascular complications, including an impairment of vascular function and alterations in the reactivity of blood vessels to vasoactive substances in various vasculature. In the present study, the authors have observed endothelin-B ($ET_B$) receptor agonist-induced relaxation in precontracted mesenteric arterial segments from streptozotocin (STZ)-induced diabetic rats, which was not shown from control rats or in other arterial segments from diabetic rats. Accordingly, the goal of this study was to investigate in what way STZ-induced diabetes altered reactivity of the mesenteric arterial bed and to examine the causal relaxation, if any, between this $ET_B$ receptor-mediated relaxation and endothelial paracrine function, especially nitric oxide (NO) production. The relaxation induced by $ET_B$ agonists was not observed in mesenteric arteries without endothelium. The relaxation to $ET_B$ agonists was completely abolished by pretreatment with BQ788, but not by BQ610. $N_{\omega}-nitro-L-arginine$ methyl ester and soluble guanylate cyclase inhibitors, methylene blue or LY83583 significantly attenuated the relaxant responses to $ET_B$ agonists, respectively. When the expression of eNOS and iNOS was evaluated on agarose gel stained with ethidium bromide, the expression of eNOS mRNA in diabetic rats was significantly decreased, but the expression of iNOS was increased compared with control rats. Furthermore, the iNOS-like immunostaining was densely detected in the endothelium and slightly in the arterial smooth muscle of diabetic rats, but not in control rats. These observations suggest that $ET_B$ receptor may not play a role in maintaining mesenteric vascular tone in normal situation. However, the alterations in $ET_B$ receptor sensitivity were found in diabetic rats and lead to the $ET_B$ agonist-induced vasorelaxation, which is closely related to NO production. In the state of increased vascular resistance of diabetic mesenteric vascular bed, enhanced NO production by activation of iNOS could lead to compensatory vasorelaxation to modulate adequate perfusion pressure to splanchnic area.

Participation of COX-1 and COX-2 in the contractile effect of phenylephrine in prepubescent and old rats

  • Guevara-Balcazar, Gustavo;Ramirez-Sanchez, Israel;Mera-Jimenez, Elvia;Rubio-Gayosso, Ivan;Aguilar-Najera, Maria Eugenia;Castillo-Hernandez, Maria C.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권4호
    • /
    • pp.407-413
    • /
    • 2017
  • Vascular reactivity can be influenced by the vascular region, animal age, and pathologies present. Prostaglandins (produced by COX-1 and COX-2) play an important role in the contractile response to phenylephrine in the abdominal aorta of young rats. Although these COXs are found in many tissues, their distribution and role in vascular reactivity are not clear. At a vascular level, they take part in the homeostasis functions involved in many physiological and pathologic processes (e.g., arterial pressure and inflammatory processes). The aim of this study was to analyze changes in the contractile response to phenylephrine of thoracic/abdominal aorta and the coronary artery during aging in rats. Three groups of rats were formed and sacrificed at three distinct ages: prepubescent, young and old adult. The results suggest that there is a higher participation of prostanoids in the contractile effect of phenylephrine in pre-pubescent rats, and a lower participation of the same in old rats. Contrarily, there seems to be a higher participation of prostanoids in the contractile response of the coronary artery of older than pre-pubescent rats. Considering that the changes in the expression of COX-2 were similar for the three age groups and the two tissues tested, and that expression of COX-1 is apparently greater in older rats, COX-1 and COX-2 may lose functionality in relation to their corresponding receptors during aging in rats.