• 제목/요약/키워드: Voltage clamp

검색결과 398건 처리시간 0.025초

An Active Clamp High Step-Up Boost Converter with a Coupled Inductor

  • Luo, Quanming;Zhang, Yang;Sun, Pengju;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.86-95
    • /
    • 2015
  • An active clamp high step-up boost converter with a coupled inductor is proposed in this paper. In the proposed strategy, a coupled inductor is adopted to achieve a high voltage gain. The clamp circuit is included to achieve the zero-voltage-switching (ZVS) condition for both the main and clamp switches. A rectifier composed of a capacitor and a diode is added to reduce the voltage stress of the output rectifier diode. As a result, diodes with a low reverse-recovery time and forward voltage-drop can be utilized. Since the voltage stresses of the main and clamp switches are far below the output voltage, low-voltage-rated MOSFETs can be adopted to reduce conduction losses. Moreover, the reverse-recovery losses of the diodes are reduced due to the inherent leakage inductance of the coupled inductor. Therefore, high efficiency can be expected. Firstly, the derivation of the proposed converter is given and the operation analysis is described. Then, a steady-state performance analysis of the proposed converter is analyzed in detail. Finally, a 250 W prototype is built to verify the analysis. The measured maximum efficiency of the prototype is 95%.

Voltage Clamp Bias를 사용한 고전압 LED Drive IC (A High Voltage LED Drive IC using Voltage Clamp Bias)

  • 박성남;박시홍
    • 한국전기전자재료학회논문지
    • /
    • 제22권7호
    • /
    • pp.559-562
    • /
    • 2009
  • Due to the enormous progress achieved in light emitting diodes (LEDs) LEDs have been become a good solution for lightings. In LED driver for lighting applications, it is required high input voltage to drive more LEDs. Therefore, high-voltage should be changed to low-voltage to supply power for drive IC. In this paper, LED drive IC using voltage clamp bias circuit, it use a hysteretic-buck converter topology was proposed and verified through experiments.

Voltage Clamp Bias를 사용한 고전압 LED Drive IC (A High-voltage LED Drive IC Using a Voltage Clamp Bias)

  • 김성남;박시홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.85-87
    • /
    • 2009
  • Due to the enormous progress in light emitting diodes (LEDs), LEDs have been become a good solution for lightings. In LED driver for lighting applications, it is required a high input voltage to drive more LEDs. Therefore, a high-voltage should be changed to low-voltage to supply power for drive IC. In this paper, a LED drive IC with hysteretic-buck converter topology using a voltage clamp bias circuit was proposed and verified through simulations.

  • PDF

Model-based Optimal Control Algorithm for the Clamp Switch of Zero-Voltage Switching DC-DC Converter

  • Ahn, Minho;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.323-333
    • /
    • 2017
  • This paper proposes a model-based optimal control algorithm for the clamp switch of a zero-voltage switching (ZVS) bidirectional DC-DC converter. The bidirectional DC-DC converter (BDC) can accomplish the ZVS operation using the clamp switch. The minimum current for the ZVS operation is maintained, and the inductor current is separated from the input and output voltages by the clamp switch in this topology. The clamp switch can decrease the inductor current ripple, switching loss, and conduction loss of the system. Therefore, the optimal control of the clamp switch is significant to improve the efficiency of the system. This paper proposes a model-based optimal control algorithm using phase shift in a micro-controller unit. The proposed control algorithm is demonstrated by the results of PSIM simulations and an experiment conducted in a 1-kW ZVS BDC system.

고전압 집적회로를 위한 래치업-프리 구조의 HBM 12kV ESD 보호회로 (A 12-kV HBM ESD Power Clamp Circuit with Latchup-Free Design for High-Voltage Integrated Circuits)

  • 박재영;송종규;장창수;김산홍;정원영;김택수
    • 대한전자공학회논문지SD
    • /
    • 제46권1호
    • /
    • pp.1-6
    • /
    • 2009
  • 고전압 소자에서 스냅백 이후의 유지 전압은 구동전압에 비해 매우 작아서 고전압 MOSFET이 ESD(ElecroStatic Discharge) 파워클램프로 바로 사용될 경우 래치업 문제를 일으킬 수 있다. 본 연구에서는 스택 바이폴라 소자를 이용하여 래치업 문제가 일어나지 않는 구조를 제안하였다. 제안된 구조에서는 유지 전압이 구동전압 보다 높으므로 래치업 문제가 발생하지 않으면서, 기존의 다이오드를 사용한 고전압 파워클램프에 비해 면적이 작으며, 내구성 측면에서 800% 성능향상이 있게 되었다. 제안된 구조는 $0.35{\mu}m$ 60V BCD(Bipolar-CMOS-DMOS) 공정을 사용하여 제작되었으며, TLP(Transmission Line Pulse) 장비로 웨이퍼-레벨 측정을 하였다.

직접전력변환 방식을 이용한 능동 클램프 AC-DC 컨버터 (Active-Clamp AC-DC Converter with Direct Power Conversion)

  • 조용원;권봉환
    • 전력전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.230-237
    • /
    • 2012
  • This paper proposes an active-clamp ac-dc converter with direct power conversion that has a simple structure and achieves high efficiency. The proposed converter is derived by integrating the step-down ac chopper and the output-voltage doubler. The proposed converter provides direct ac-dc conversion and dc output voltage without using any full-bridge diode rectifier. The step-down ac chopper using an active-clamp mechanism serves to clamp the voltage spike across the main switches and provides zero-voltage turn-on switching. The resonant-current path formed by the leakage inductance of the transformer and the resonant capacitor of the output-voltage doubler achieves the zero-current turn-off switching of the output diodes. The operation principle of the converter is analyzed and verified. A 500W prototype is implemented to show the performance of the proposed converter. The prototype provides maximum efficiency of 95.1% at the full load.

보조 권선형 능동 스너버를 적용하여 낮은 스위치 서지 전압 특성을 갖는 유사 공진형 컨버터에 관한 연구 (A Study on Quasi Resonant Converter with Low Switching Surge Voltage Characteristics by Applying Auxiliary Winding Type Active Snubber)

  • 안태영
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.56-61
    • /
    • 2018
  • In this paper, a new type of active snubber was proposed to lower the excessive rated voltage of the clamp capacitor which was a problem in the conventional circuit by applying auxiliary winding into the active snubber. A simplified equivalent circuit of the proposed snubber was derived by applying it to QR flyback converter, and the equivalent circuits for each switch state was shown under the steady-state condition. In addition, the maximum voltage of the clamp capacitor as well as the main switch was found by using the steady-state equations. In particular, it was found that the clamp capacitor voltage could be controlled by the auxiliary winding ratio. In order to verify the utility and practicality of the proposed converter with auxiliary winding type active snubber circuit, a prototype with an output voltage of 19V and a maximum load current of 6A was produced and the results were reported.

CLAMP MODE에서 동작하는 ZVS-MRC FORWARD 콘버어터에 관한 연구 (THE CLAMP MODE FORWARD ZERO-VOLTAGE-SWITCHING MULTI-RESONANT-CONVERTER)

  • 김희준;미스리시문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.210-213
    • /
    • 1991
  • The clamp mode Zero-Volatge-Switched Multi-Resonant-Converter(ZVS-MRC) is proposed. In the converter, the performance of the conventional ZVS-MRC is improved by clamping the drain-to-source voltage of the power switch using a soft switching nondissipative active clamp network. The analysis for each stage of the converter operation modes is presented and is verified by experiments.

  • PDF

Boost 입력형 능동클램프 Forward ZVS Converter (Characteristics of Boost Input Type Active Clamp Forward ZVS Converter)

  • 오용승;김희준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.386-389
    • /
    • 2002
  • This paper proposes the boost input type active clamp forward ZVS(zero voltage switching) DC-DC converter which can provide high efficiency and improved EMI characteristics. Moreover, it has active clamp circuit for reducing the voltage stress and zero voltage switching technique for minimizing switching loss. The detailed operation principles and the simulation results are presented.

  • PDF

A Novel Clamp-Mode Coupled-Inductor Boost Converter with High Step-Up Voltage Gain

  • Tattiwong, Kaweewat;Bunlaksananusorn, Chanin
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.809-819
    • /
    • 2017
  • In this paper, a new coupled inductor DC-DC converter with a high step-up voltage gain is proposed. It is developed from a clamp-mode coupled-inductor boost converter by incorporating an additional capacitor and diode. The proposed converter is able to achieve the higher voltage gain, while still retaining the switch voltage clamp property of its predecessor. In the paper, operation and analysis of the proposed converter are described. Experimental results from a prototype converter are presented to verify the validity of the analysis. The prototype circuit attains the highest efficiency of 92.8%.