• Title/Summary/Keyword: WACP

Search Result 3, Processing Time 0.02 seconds

A NOTE ON SPACES DETERMINED BY CLOSURE-LIKE OPERATORS

  • Hong, Woo Chorl;Kwon, Seonhee
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.365-375
    • /
    • 2016
  • In this paper, we study some classes of spaces determined by closure-like operators $[{\cdot}]_s$, $[{\cdot}]_c$ and $[{\cdot}]_k$ etc. which are wider than the class of $Fr{\acute{e}}chet-Urysohn$ spaces or the class of sequential spaces and related spaces. We first introduce a WADS space which is a generalization of a sequential space. We show that X is a WADS and k-space iff X is sequential and every WADS space is C-closed and obtained that every WADS and countably compact space is sequential as a corollary. We also show that every WAP and countably compact space is countably sequential and obtain that every WACP and countably compact space is sequential as a corollary. And we show that every WAP and weakly k-space is countably sequential and obtain that X is a WACP and weakly k-space iff X is sequential as a corollary.

GENERALIZED FRÉCHET-URYSOHN SPACES

  • Hong, Woo-Chorl
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.261-273
    • /
    • 2007
  • In this paper, we introduce some new properties of a topological space which are respectively generalizations of $Fr\'{e}chet$-Urysohn property. We show that countably AP property is a sufficient condition for a space being countable tightness, sequential, weakly first countable and symmetrizable, to be ACP, $Fr\'{e}chet-Urysohn$, first countable and semimetrizable, respectively. We also prove that countable compactness is a sufficient condition for a countably AP space to be countably $Fr\'{e}chet-Urysohn$. We then show that a countably compact space satisfying one of the properties mentioned here is sequentially compact. And we show that a countably compact and countably AP space is maximal countably compact if and only if it is $Fr\'{e}chet-Urysohn$. We finally obtain a sufficient condition for the ACP closure operator $[{\cdot}]_{ACP}$ to be a Kuratowski topological closure operator and related results.