• Title/Summary/Keyword: Weyl spectrum

Search Result 30, Processing Time 0.03 seconds

ON WEIGHTED WEYL SPECTRUM, II

  • Arora Subhash Chander;Dharmarha Preeti
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.715-722
    • /
    • 2006
  • In this paper, we show that if T is a hyponormal operator on a non-separable Hilbert space H, then $Re\;{\omega}^0_{\alpha}(T)\;{\subset}\;{\omega}^0_{\alpha}(Re\;T)$, where ${\omega}^0_{\alpha}(T)$ is the weighted Weyl spectrum of weight a with ${\alpha}\;with\;{\aleph}_0{\leq}{\alpha}{\leq}h:=dim\;H$. We also give some conditions under which the product of two ${\alpha}-Weyl$ operators is ${\alpha}-Weyl$ and its converse implication holds, too. Finally, we show that the weighted Weyl spectrum of a hyponormal operator satisfies the spectral mapping theorem for analytic functions under certain conditions.

On the weyl spectrum of weight

  • Yang, Youngoh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.91-97
    • /
    • 1998
  • In this paper we study the Weyl spectrum of weight $\alpha, \omega_\alpha(T)$, of an operator T acting on an infinite dimensional Hilbert space. Main results are as follows. Firstly, we show that the Weyll spectrum of weight $\alpha$ of a polynomially $\alpha$-compact operator is finite, and that similarity preserves polynomial $\alpha$-compactness and the $\alpha$-Weyl's theorem both. Secondly, we give a sufficient condition for an operator to be the sum of an unitary and a $\alpha$-compact operators.

  • PDF

ON JOINT WEYL AND BROWDER SPECTRA

  • Kim, Jin-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.53-62
    • /
    • 2000
  • In this paper we explore relations between joint Weyl and Browder spectra. Also, we give a spectral characterization of the Taylor-Browder spectrum for special classes of doubly commuting n-tuples of operators and then give a partial answer to Duggal's question.

  • PDF

WEYL SPECTRUM OF THE PRODUCTS OF OPERATORS

  • Cao, Xiaohong
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.771-780
    • /
    • 2008
  • Let $M_C=\(\array{A&C\\0&B}\)$ be a $2{\times}2$ upper triangular operator matrix acting on the Hilbert space $H{\bigoplus}K\;and\;let\;{\sigma}_w(\cdot)$ denote the Weyl spectrum. We give the necessary and sufficient conditions for operators A and B which ${\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w\(\array{A&C\\0&B}\)\;or\;{\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w(A){\cup}{\sigma}_w(B)$ holds for every $C{\in}B(K,\;H)$. We also study the Weyl's theorem for operator matrices.

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF

ON THE JOINT WEYL AND BROWDER SPECTRA OF HYPONORMAL OPERTORS

  • Lee, Young-Yoon
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.2
    • /
    • pp.235-241
    • /
    • 2001
  • In this paper we study some properties of he joint Weyl and Browder spectra for the slightly larger classes containing doubly commuting n-tuples of hyponormal operators.

  • PDF

Conditions on Operators Satisfying Weyl's Theorem

  • Kim, An-Hyun
    • Honam Mathematical Journal
    • /
    • v.25 no.1
    • /
    • pp.75-82
    • /
    • 2003
  • In this note it is shown that if T satisfies ($G_{1}$)-condition with finite spectrum then Weyl's theorem holds for T. If T is totally *-paranormal then $T-{\lambda}$ has finite ascent for all ${\lambda}{\in}{\mathbb{C}},\;T$ is isoloid, and Weyl's theorem holds for T.

  • PDF

WEYL'S THEOREM FOR ISOLOID AND REGULOID OPERATORS

  • Kim, An-Hyun;Yoo, Sung-Uk
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.179-188
    • /
    • 1999
  • In this paper we find some classes of operators for which Weyl`s theorem holds. The main result is as follows. If T$\in$L(\ulcorner) satisfies the following: (ⅰ) Either T or T\ulcorner is reduced by each of its eigenspaces; (ⅱ) Weyl`s theorem holds for T; (ⅲ) T is isoloid, then for every polynomial p, Weyl`s theorem holds for p(T).

  • PDF

GENERALIZED BROWDER, WEYL SPECTRA AND THE POLAROID PROPERTY UNDER COMPACT PERTURBATIONS

  • Duggal, Bhaggy P.;Kim, In Hyoun
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.281-302
    • /
    • 2017
  • For a Banach space operator $A{\in}B(\mathcal{X})$, let ${\sigma}(A)$, ${\sigma}_a(A)$, ${\sigma}_w(A)$ and ${\sigma}_{aw}(A)$ denote, respectively, its spectrum, approximate point spectrum, Weyl spectrum and approximate Weyl spectrum. The operator A is polaroid (resp., left polaroid), if the points $iso{\sigma}(A)$ (resp., $iso{\sigma}_a(A)$) are poles (resp., left poles) of the resolvent of A. Perturbation by compact operators preserves neither SVEP, the single-valued extension property, nor the polaroid or left polaroid properties. Given an $A{\in}B(\mathcal{X})$, we prove that a sufficient condition for: (i) A+K to have SVEP on the complement of ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) for every compact operator $K{\in}B(\mathcal{X})$ is that ${\sigma}_w(A)$ (resp., ${\sigma}_{aw}(A)$) has no holes; (ii) A + K to be polaroid (resp., left polaroid) for every compact operator $K{\in}B(\mathcal{X})$ is that iso${\sigma}_w(A)$ = ∅ (resp., $iso{\sigma}_{aw}(A)$ = ∅). It is seen that these conditions are also necessary in the case in which the Banach space $\mathcal{X}$ is a Hilbert space.

ON SPECTRA OF 2-ISOMETRIC OPERATORS

  • Yang, Young-Oh;Kim, Cheoul-Jun
    • The Pure and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.277-281
    • /
    • 2009
  • A Hilbert space operator T is a 2-isometry if $T^{{\ast}2}T^2\;-\;2T^{\ast}T+I$ = O. We shall study some properties of 2-isometries, in particular spectra of a non-unitary 2-isometry and give an example. Also we prove with alternate argument that the Weyl's theorem holds for 2-isometries.

  • PDF