• 제목/요약/키워드: Zataria multiflora

검색결과 2건 처리시간 0.021초

Radiosensitization Effects of a Zataria multiflora Extract on Human Glioblastoma Cells

  • Aghamohammadi, Azar;Hosseinimehr, Seyed Jalal;Ghasemi, Arash;Azadbakht, Mohammad;Pourfallah, Tayyeb Allahverdi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.7285-7290
    • /
    • 2015
  • Background: Although radiotherapy is one of the most effective strategies in the treatment of cancers, it is associated with short and long term side effects on normal tissues. Zataria multiflora Boiss (Laminacea) (ZM) has several biological properties such as antioxidant and anti-inflammation activities.Here we investigated cell killing effects of a hydroalcoholic Zataria multiflora extract on cell death induced by ionizing radiation in a human glioblastoma cell line (A172) and human non-malignant fibroblasts (HFFF2) in vitro. Materials and Methods: A172 and HFFF2 cells were treated with a hydroalcoholic extract of dried aerial parts of Zataria multiflora at different concentrations (25, 50, 100, 150 and $200{\mu}g/ml$) and then exposed to ionizing radiation (IR). Cell proliferation and DNA fragmentation were evaluated. Thymol content in the extract was analyzed and quantified by HPLC methods. Results: A172 cell proliferation was significantly inhibited by ZM. The percentage cell survival was $91.8{\pm}8.57$ for cells treated with $200{\mu}g/ml$ of ZM extract alone while it was $76.0{\pm}4.27$ and $66.2{\pm}8.42$ for cells treated with ZM and exposed to IR at doses of 3Gy and 6Gy, respectively. Radiation-induced apoptosis in A172 cells was significantly increased following treatment with ZM at doses of $200{\mu}g/ml$. ZM extract did not exhibit any enhanced cell killing effects and apoptosis caused by IR on HFFF2 cells. Conclusions: These data show selective radiosensitization effects of ZM in A172 cells apparently due to increased radiation-induced apoptosis.

The Preventive Effects of Standardized Extract of Zataria multiflora and Carvacrol on Acetaminophen-Induced Hepatotoxicity in Rat - Zataria multiflora and Carvacrol and Hepatotoxicity -

  • Mohebbati, Reza;Paseban, Maryam;Beheshti, Farimah;Soukhtanloo, Mohammad;Shafei, Mohammad Naser;Rakhshandeh, Hasan;Rad, Abolfazl Khajavi
    • 대한약침학회지
    • /
    • 제21권4호
    • /
    • pp.249-257
    • /
    • 2018
  • Objectives: The hepatotoxicity induced by Acetaminophen (AAP) mostly mediated by effect on oxidative stress parameters. The Zataria multiflora (Z.M) is an herbal medicine with well-known antioxidant effect. The aim of this study is investigation of preventive effects of Z.M and Carvacrol (CAR) on AAP-induced hepatotoxicity in rats. Methods: Rats were randomly divided into four groups including: 1) Control, 2) Acetaminophen (AAP), 3) and 4) CAR. The saline, Z.M (200 mg/kg) and CAR (20 mg/kg) were administrated orally for 6 days, after that AAP (600 mg/kg) was administrated in the $7^{th}$ day. Blood sampling was performed on the first and last days. Also, the liver tissue was removed for evaluation of Malondyaldehide (MDA), Thiol content, Superoxide dismutase (SOD) and Catalase (CAT). Total Protein (tPro), Glutamic Oxaloacetic Transaminase (GOT), Glutamic Pyruvic Transaminase (GPT) and Alkaline Phosphatase (ALP) in liver tissue were evaluated. The changes (${\Delta}$) of enzymes activities were presented. Results: The ${\Delta}GOT$, ${\Delta}GPT$ and ${\Delta}ALP$ in CAR group significantly decreased compared to AAP group (P < 0.01 to P < 0.001) and ${\Delta}GPT$ in Z.M group was significantly reduced in comparison with AAP group (P < 0.05). Also, MDA, Thiol, SOD and CAT levels in treated groups were attenuated compared to AAP group (P < 0.05 to P < 0.001). Conclusion: Z.M and CAR have a powerful hepatoprotective effect. CAR is more effective than Z.M. Based on the results. Z.M and CAR could be potent supplementary agents against hepatotoxicity of AAP in patients.