• Title/Summary/Keyword: abnormal behavior analysis

Search Result 190, Processing Time 0.024 seconds

Development of Abnormal Behavior Monitoring of Structure using HHT (HHT를 이용한 이상거동 시점 추정 기법 개발)

  • Kim, Tae-Heon;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.92-98
    • /
    • 2015
  • Recently, buildings tend to be large size, complex shape and functional. As the size of buildings is becoming massive, the need for structural health monitoring (SHM) technique is increasing. Various SHM techniques have been studied for buildings which have different dynamic characteristics and influenced by various external loads. "Abnormal behavior point" is a moment when the structure starts vibrating abnormally and this can be detected by comparing between before and after abnormal behavior point. In other words, anomalous behavior is a sign of damage on structures and estimating the abnormal behavior point can be directly related to the safety of structure. Abnormal behavior causes damage on structures and this leads to enormous economic damage as well as damage for humans. This study proposes an estimating technique to find abnormal behavior point using Hilber-Huang Transform which is a time-frequency signal analysis technique and the proposed algorithm has been examined through laboratory tests with a bridge model using a shaking table.

Foreign Investors' Abnormal Trading Behavior in the Time of COVID-19

  • KHANTHAVIT, Anya
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.63-74
    • /
    • 2020
  • This study investigates the behavior of foreign investors in the Stock Exchange of Thailand (SET) in the time of coronavirus disease 2019 (COVID-19) as to whether trading is abnormal, what strategy is followed, whether herd behavior is present, and whether the actions destabilize the market. Foreign investors' trading behavior is measured by net buying volume divided by market capitalization, whereas the stock market behavior is measured by logged return on the SET index portfolio. The data are daily from Tuesday, August 28, 2018, to Monday, May 18, 2020. The study extends the conditional-regression model in an event-study framework and extracts the unobserved abnormal trading behavior using the Kalman filtering technique. It then applies vector autoregressions and impulse responses to test for the investors' chosen strategy, herd behavior, and market destabilization. The results show that foreign investors' abnormal trading volume is negative and significant. An analysis of the abnormal trading volume with stock returns reveals that foreign investors are not positive-feedback investors, but rather, they self-herd. Although foreign investors' abnormal trading does not destabilize the market, it induces stock-return volatility of a similar size to normal trade. The methodology is new; the findings are useful for researchers, local authorities, and investors.

Risk Evaluation of Slope Using Principal Component Analysis (PCA) (주성분분석을 이용한 사면의 위험성 평가)

  • Jung, Soo-Jung;Kim, -Yong-Soo;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.69-79
    • /
    • 2010
  • To detect abnormal events in slopes, Principal Component Analysis (PCA) is applied to the slope that was collapsed during monitoring. Principal component analysis is a kind of statical methods and is called non-parametric modeling. In this analysis, principal component score indicates an abnormal behavior of slope. In an abnormal event, principal component score is relatively higher or lower compared to a normal situation so that there is a big score change in the case of abnormal. The results confirm that the abnormal events and collapses of slope were detected by using principal component analysis. It could be possible to predict quantitatively the slope behavior and abnormal events using principal component analysis.

Abnormal Behavior Detection Based on Adaptive Background Generation for Intelligent Video Analysis (지능형 비디오 분석을 위한 적응적 배경 생성 기반의 이상행위 검출)

  • Lee, Seoung-Won;Kim, Tae-Kyung;Yoo, Jang-Hee;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.111-121
    • /
    • 2011
  • Intelligent video analysis systems require techniques which can predict accidents and provide alarms to the monitoring personnel. In this paper, we present an abnormal behavior analysis technique based on adaptive background generation. More specifically, abnormal behaviors include fence climbing, abandoned objects, fainting persons, and loitering persons. The proposed video analysis system consists of (i) background generation and (ii) abnormal behavior analysis modules. For robust background generation, the proposed system updates static regions by detecting motion changes at each frame. In addition, noise and shadow removal steps are also were added to improve the accuracy of the object detection. The abnormal behavior analysis module extracts object information, such as centroid, silhouette, size, and trajectory. As the result of the behavior analysis function objects' behavior is configured and analyzed based on the a priori specified scenarios, such as fence climbing, abandoning objects, fainting, and loitering. In the experimental results, the proposed system was able to detect the moving object and analyze the abnormal behavior in complex environments.

Detection of Abnormal Behavior by Scene Analysis in Surveillance Video (감시 영상에서의 장면 분석을 통한 이상행위 검출)

  • Bae, Gun-Tae;Uh, Young-Jung;Kwak, Soo-Yeong;Byun, Hye-Ran
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.744-752
    • /
    • 2011
  • In intelligent surveillance system, various methods for detecting abnormal behavior were proposed recently. However, most researches are not robust enough to be utilized for actual reality which often has occlusions because of assumption the researches have that individual objects can be tracked. This paper presents a novel method to detect abnormal behavior by analysing major motion of the scene for complex environment in which object tracking cannot work. First, we generate Visual Word and Visual Document from motion information extracted from input video and process them through LDA(Latent Dirichlet Allocation) algorithm which is one of document analysis technique to obtain major motion information(location, magnitude, direction, distribution) of the scene. Using acquired information, we compare similarity between motion appeared in input video and analysed major motion in order to detect motions which does not match to major motions as abnormal behavior.

Real-time Abnormal Behavior Analysis System Based on Pedestrian Detection and Tracking (보행자의 검출 및 추적을 기반으로 한 실시간 이상행위 분석 시스템)

  • Kim, Dohun;Park, Sanghyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.25-27
    • /
    • 2021
  • With the recent development of deep learning technology, computer vision-based AI technologies have been studied to analyze the abnormal behavior of objects in image information acquired through CCTV cameras. There are many cases where surveillance cameras are installed in dangerous areas or security areas for crime prevention and surveillance. For this reason, companies are conducting studies to determine major situations such as intrusion, roaming, falls, and assault in the surveillance camera environment. In this paper, we propose a real-time abnormal behavior analysis algorithm using object detection and tracking method.

  • PDF

A simple analysis on the abnormal behavior of the argon metastable density in an inductively coupled Ar plasma

  • Park, Min;Yu, Sin-Jae;Kim, Jeong-Hyeong;Seong, Dae-Jin;Sin, Yong-Hyeon;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.438-438
    • /
    • 2010
  • The abnormal behavior of the argon metastable density during the E-H mode transition in argon ICP discharge was investigated. Lots of investigations including global models expected that during and after the mode transition of ICP discharge, the density of metastable increases with applied rf power (i.e. electron density). However, recent direct measurement of metastable density revealed that the metastable density of argon decreases with the applied power during and after the mode transition. This result may not be explained by the previous global model which is based on the assumption of the Maxwellian electron energy distribution function (EEDF). In this paper, to explain this abnormal behavior with simple manners, a simple global model taking account of the effect of the non-Maxwellian EEDFs incorporating into a set of coupled rate equations is proposed. The result showed that the calculated metastable density taking account of non-Maxwellian EEDF and its evolution during the transition has an abnormal behavior with electron density and is in good agreement with the previous measurement results, indicating the close coupling of electron kinetics and the behavior of metastable density. The proposed simple model is expected to provide qualitative kinetic insight to understand the behavior of the metastable density in various plasma discharges which typically exhibit non-Maxwellian distribution.

  • PDF

Real-time video Surveillance System Design Proposal Using Abnormal Behavior Recognition Technology

  • Lee, Jiyoo;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.120-123
    • /
    • 2020
  • The surveillance system to prevent crime and accidents in advance has become a necessity, not an option in real life. Not only public institutions but also individuals are installing surveillance cameras to protect their property and privacy. However, since the installed surveillance camera cannot be monitored for 24 hours, the focus is on the technology that tracks the video after an accident occurs rather than prevention. In this paper, we propose a system model that monitors abnormal behaviors that may cause crimes through real-time video, and when a specific behavior occurs, the surveillance system automatically detects it and responds immediately through an alarm. We are a model that analyzes real-time images from surveillance cameras and uses I3D models from analysis servers to analyze abnormal behavior and deliver notifications to web servers and then to clients. If the system is implemented with the proposed model, immediate response can be expected when a crime occurs.

Deep Learning-Based Companion Animal Abnormal Behavior Detection Service Using Image and Sensor Data

  • Lee, JI-Hoon;Shin, Min-Chan;Park, Jun-Hee;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.10
    • /
    • pp.1-9
    • /
    • 2022
  • In this paper, we propose the Deep Learning-Based Companion Animal Abnormal Behavior Detection Service, which using video and sensor data. Due to the recent increase in households with companion animals, the pet tech industry with artificial intelligence is growing in the existing food and medical-oriented companion animal market. In this study, companion animal behavior was classified and abnormal behavior was detected based on a deep learning model using various data for health management of companion animals through artificial intelligence. Video data and sensor data of companion animals are collected using CCTV and the manufactured pet wearable device, and used as input data for the model. Image data was processed by combining the YOLO(You Only Look Once) model and DeepLabCut for extracting joint coordinates to detect companion animal objects for behavior classification. Also, in order to process sensor data, GAT(Graph Attention Network), which can identify the correlation and characteristics of each sensor, was used.

Detecting Android Malware Based on Analyzing Abnormal Behaviors of APK File

  • Xuan, Cho Do
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.17-22
    • /
    • 2021
  • The attack trend on end-users via mobile devices is increasing in both the danger level and the number of attacks. Especially, mobile devices using the Android operating system are being recognized as increasingly being exploited and attacked strongly. In addition, one of the recent attack methods on the Android operating system is to take advantage of Android Package Kit (APK) files. Therefore, the problem of early detecting and warning attacks on mobile devices using the Android operating system through the APK file is very necessary today. This paper proposes to use the method of analyzing abnormal behavior of APK files and use it as a basis to conclude about signs of malware attacking the Android operating system. In order to achieve this purpose, we propose 2 main tasks: i) analyzing and extracting abnormal behavior of APK files; ii) detecting malware in APK files based on behavior analysis techniques using machine learning or deep learning algorithms. The difference between our research and other related studies is that instead of focusing on analyzing and extracting typical features of APK files, we will try to analyze and enumerate all the features of the APK file as the basis for classifying malicious APK files and clean APK files.