• Title/Summary/Keyword: adaptive beamforming

Search Result 160, Processing Time 0.025 seconds

Tracking Initiation Performance Analysis of the Adaptive Beamforming (추적 개시 확률 산출을 통한 적응빔형성 성능 분석)

  • Ha, Chang-Eup;Kim, Yong-Sin;Lee, Sang-Hyeok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.89-96
    • /
    • 2016
  • The performance of anti-submarine sonar detection is required to improve by the development of submarine noise reduction technology. because of the need of an anti-submarine detection ability, known for superior beamforming performance, adaptive beamforming algorithms have been considered as an alternative beamforming algorithm of a conventional beamforming algorithm. In order to achieve improved performance by applying an adaptive beamforming algorithm to the sonar system, the adaptive beamforming algorithm applicability of system must be verified, To do this, the performance index for the system applicability must be established. In this paper, a tracking initiation probability of the adaptive beamforming algorithm and the conventional beamforming algorithm was calculated and the performance of both techniques was quantified, a system applicability of the adaptive beamforming algorithm was reviewed.

Analysis on Design Factors of the Optimal Adaptive Beamforming Algorithm for GNSS Anti-Jamming Receivers

  • Jang, Dong-Hoon;Kim, Hyeong-Pil;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.1
    • /
    • pp.19-29
    • /
    • 2019
  • This paper analyzes the design factors for GNSS anti-jamming receiver system in which the adaptive beamforming algorithm is applied in GNSS receiver system. The design analysis factors used in this paper are divided into three: antenna, beamforming algorithm, and operation environment. This paper analyzes the above three factors and presents numerical simulation results on antenna and beamforming algorithm.

Analysis on performance of grid-free compressive beamforming based on experiment (실험 기반 무격자 압축 빔형성 성능 분석)

  • Shin, Myoungin;Cho, Youngbin;Choo, Youngmin;Lee, Keunhwa;Hong, Jungpyo;Kim, Seongil;Hong, Wooyoung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.179-190
    • /
    • 2020
  • In this paper, we estimated the Direction of Arrival (DOA) using Conventional BeamForming (CBF), adaptive beamforming and compressive beamforming. Minimum Variance Distortionless Response (MVDR) and Multiple Signal Classification (MUSIC) are used as the adaptive beamforming, and grid-free compressive sensing is applied for the compressive sensing beamforming. Theoretical background and limitations of each technique are introduced, and the performance of each technique is compared through simulation and real experiments. The real experiments are conducted in the presence of reflected signal, transmitting a sound using two speakers and receiving acoustic data through a linear array consisting of eight microphones. Simulation and experimental results show that the adaptive beamforming and the grid-free compressive beamforming have a higher resolution than conventional beamforming when there are uncorrelated signals. On the other hand, the performance of the adaptive beamforming is degraded by the reflected signals whereas the grid-free compressive beamforming still improves the conventional beamforming resolution regardless of reflected signal presence.

A study on wideband adaptive beamforming based on WBRCB for passive uniform line array sonar (WBRCB 기반의 수동 선배열 소나 광대역 적응빔형성 기법 연구)

  • Hyun, Ara;Ahn, Jae-Kyun;Yang, In-Sik;Kim, Gwang-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.145-153
    • /
    • 2019
  • Adaptive beamforming methods are known to suppress sidelobes and improve detection performance of weak signal by constructing weight vectors depending on the received signal itself. A standard adaptive beamforming like the MVDR (Minimum Variance Distortionless Response) is very sensitive to mismatches between weight vectors and actual signal steering vectors. Also, a large computational complexity for estimating a stable covariance matrix is required when wideband beamforming for a large-scale array is used. In this paper, we exploit the WBRCB (Wideband Robust Capon Beamforming) method for stable and robust wideband adaptive beamforming of a passive large uniform line array sonar. To improve robustness of adaptive beamforming performance in the presence of mismatches, we extract a optimum mismatch parameter. WBRCB with extracted mismatch parameter shows performance improvement in beamforming using synthetic and experimental passive sonar signals.

Array Resolution Improving Methods for Beamforming Algorithm (빔형성방법에서의 분해능 향상 기법에 관한 연구)

  • Hwang, Seon-Gil;Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.164-169
    • /
    • 2005
  • Microphone array techniques are being used widely in wind tunnel measurements for identification of the distributed aerodynamic noise sources on the model being tested. Depending on the frequencies and sound levels, conventional beamforming algorithm has limitation in separating two adjacent sources. Several modifications to the classical beamforming have been developed to enhance way resolution and reduce sidelobe levels. In this Paper the robust adaptive beamforming and the CLEAN algorithm are used to compare to the result of conventional beamforming method. It is found that the CLEAN algorithm is capable of pin-pointing locations of multiple sources nearby, while these sources are unidentifiable with robust adaptive or conventional beamforming techniques.

  • PDF

Block LMS-Based Adaptive Beamforming Algorithm for Smart Antenna (스마트 안테나를 위한 블록 LMS 기반 적응형 빔형성 알고리즘)

  • O, Jeong-Geun;Kim, Seong-Hun;Yu, Gwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.689-692
    • /
    • 2003
  • In this paper, we propose an adaptive beamforming algorithm for array antenna. The proposed beamforming algorithm, based on Block LMS (Block - Least Mean Squares) algorithm, has a variable step size from coefficient update. This method shows some advantages that the convergence speed is fast and the calculation time can reduced using a block LMS algorithm from frequency domain. As the adaptive parameter approaches a stationary state, it could reduce the number of filter coefficient update with the help of various step size. In this paper we compared the efficiency of the proposed algorithm with a standard LMS algorithm which is a representative method of adaptive beamforming.

  • PDF

Design of Adaptive Beamforming Antenna using EDS Algorithm (EDS 알고리즘을 이용한 적응형 빔형성 안테나 설계)

  • Kim, Sung-Hun;Oh, Jung-Keun;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.56-58
    • /
    • 2004
  • In this paper, we propose an adaptive beamforming algorithm for array antenna. The proposed beamforming algorithm is based on EDS (Euclidean Direction Search) algorithm. Generally LMS algorithm has a much slower rate of convergence, but its low computational complexity and robustness make it a representative method of adaptive beamforming. Although the RLS algorithm is known for its fast convergence to the optimal Wiener solution, it still suffers from high computational complexity and poor performance. The proposed EDS algorithm has a rapid convergence better than LMS algorithm, and has a computational more simple complexity than RLS algorithm. In this paper we compared the efficiency of the EDS algorithm with a standard LMS algorithm.

  • PDF

Robust adpative beamforming for triplet sonar arrays (삼중 배열 소나를 위한 강인한 적응 빔형성 기법)

  • Ahn, Jae-Kyun;Ryu, Yongwoo;Chun, Seung-Yong;Kim, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.115-122
    • /
    • 2017
  • We propose a robust adaptive beamforming algorithm for triplet array sonar. The proposed beamforming algorithm obtains robustness to mismatches, left/right discrimination, and has two steps. The first is a cardioid beamformer, which supports left/right discrimination of target signals. It applies the conventional delay-and-subtract to each triplet's signal with its rotation angle and obtains multiple cardioid beams. The second is a robust adaptive beamforming to minimize nearby interferences. We regard cardioid beams as input signals of a line array and apply an adaptive beamforming algorithm to the cardioid beams. Simulations results show that the proposed algorithm provides significantly better performance than the conventional algorithms, while supporting left/right discrimination of target signals.

Adaptive beamforming of triplet arrays for active sonar systems (능동소나 시스템을 위한 삼중 배열의 적응 빔형성)

  • Ahn, Jae-Kyun;Ryu, Yongwoo;Chun, Seung-Yong;Kim, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.66-72
    • /
    • 2018
  • In this paper, we propose an adaptive beamforming algorithm of triplet arrays for active sonar systems. The proposed algorithm consists of three steps: matched filters, cardioid beamforming, and line array beamforming. First, we apply a matched filter of a transmitted pulse to received individual sensor signals and obtain filterd signals. Then, we perform the fast Fourier transform to the matched filter results, and make a cardioid beam for each triplet data, respectively. Finally, we apply an adaptive beamforming by assuming that the cardioid beams are input signals of a line array. Experimental results demonstrate that the proposed algorithm provides better performances than conventional algorithms.

Wideband adaptive beamforming method using subarrays in acoustic vector sensor linear array (부배열을 이용한 음향벡터센서 선배열의 광대역 적응빔형성기법)

  • Kim, Jeong-Soo;Kim, Chang-Jin;Lee, Young-Ju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.395-402
    • /
    • 2016
  • In this paper, a wideband adaptive beamforming approach for an acoustic vector sensor linear array is presented. It is a very important issue to estimate the stable covariance matrix for adaptive beamforming. In the conventional wideband adaptive beamforming based on coherent signal-subspace (CSS) processing, the error of bearing estimates is resulted from the focusing matrix estimation and the large number of data snapshot is necessary. To alleviate the estimation error and snapshot deficiency in estimating covariance matrix, the steered covariance matrix method in the pressure sensor is extended to the vector sensor array, and the subarray technique is incorporated. By this technique, more accurate azimuth estimates and a stable covariance matrix can be obtained with a small number of data snapshot. Through simulation, the azimuth estimation performance of the proposed beamforming method and a wideband adaptive beamforming based on CSS processing are assessed.