• Title/Summary/Keyword: aerosol hygroscopicity

Search Result 9, Processing Time 0.038 seconds

The effect of steam condensation on the behavior of an hygroscopic aerosol (흡습성 에어로졸의 거동에 미치는 수증기 응축의 영향)

  • Park, J.W.
    • Journal of ILASS-Korea
    • /
    • v.3 no.3
    • /
    • pp.14-22
    • /
    • 1998
  • The growth by steam condensation of an hygroscopic aerosol is investigated using the condensation rate model which has been derived from the mass and heat transfer equations. The present model accounts for both the solute and Kelvin effects. When the hygroscopicity is considered, condensation can occur on hygroscopic seed particles even under subsaturated steam conditions. This study focuses on the effect of hygroscopicity on the evolution of the particle size distribution and decay of the total aerosol concentration. It is found that hygroscopicity causes the particle size distribution to rapidly move upward even in a very short time, resulting in substantially higher decay of the total aerosol concentration than the case without considering hygroscopicity.

  • PDF

The Influence of Aerosol Source Region on Size-resolved Hygroscopicity During the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) Campaign

  • Lee, Yong-Seob
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E1
    • /
    • pp.9-18
    • /
    • 2006
  • Aerosol hygroscopic properties were measured by a tandem differential mobility analyzer (TDMA) system during the Aerosol Characterization Experiment (ACE)-Asia campaign from 31 March to 1 May 2001. Two high flow differential mobility analyzers (DMAs) were used to maximize the count rate on board the Center for Interdisciplinary Remotely Piloted Aircraft (CIRPAS) Twin Otter aircraft. Hygroscopic growth factor distributions of particles having initial dry nanoparticle diameters of 0.040, 0.059, 0.086, 0.126, 0.186, 0.273, 0.400, and $0.586{\mu}m$ were measured during 19 research flights. Data collected during 12 of those flights were used to investigate aerosol mixing state and the influence of aerosol source region on size-resolved hygroscopicity. The uniformity in size-resolved hygroscopicity was quantified to facilitate comparison between measurements made in different air masses. Hygroscopic growth factors are strongly dependent on source region and sizes. Mean hygroscopic growth factors were observed to be greatest when the air mass origin was from the south. The mean growth factors for continental sources decreased with initial size from 1.47 to 1.27 for $0.040{\mu}m\;and\;0.586{\mu}m$, but increased with initial size from 1.44 to 1.8 for $0.040{\mu}m\;and\;0.400{\mu}m$ dry diameters for marine sources.

Effects of Aerosol Hygroscopicity on Fine Particle Mass Concentration and Light Extinction Coefficient at Seoul and Gosan in Korea

  • Choi, Eun-Kyung;Kim, Yong-Pyo
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • The sensitivity of aerosol light extinction coefficient to the aerosol chemical composition change is estimated by (1) calculating the aerosol water content and chemical concentrations by a gas/particle equilibrium model and (2) calculating the aerosol light extinction coefficient by a Mie theory based optical model. The major chemical species are total (gas and particle phase) sulfuric acid, total nitric acid, and total ammonia which are based on the measurement data at Seoul and Gosan. At Seoul, since there were enough ammonia to neutralize both total sulfuric acid and total nitric acid, the dry ionic concentration is most sensitive to the variation of the total nitric acid level, while the total mass concentration (ionic concentration plus water content) and thus, the aerosol light extinction coefficient are primarily determined by the total sulfuric acid. At Gosan, since the concentration of ambient sulfuric acid was the highest among the inorganic species, sulfate salts determined aerosol hygroscopicity. Thus, both ionic and total mass concentration, and resultant aerosol light extinction coefficient are primarily determined by the sulfuric acid level.

Formation and Hygroscopic Growth Properties of Ultrafine Particles in College Station, Texas, in 2003 (2003년 미국 텍사스 칼리지스테이션에서 관측된 초미세입자의 형성과 흡습 성장 특성)

  • Lee, Yong-Seob;Collins, Don R.
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.793-798
    • /
    • 2007
  • During May of 2003, smoke from fires in the Yucatan Peninsula was transported across the Gulf of Mexico and into Texas where it caused significant enhancement in measured aerosol concentrations and reduced visibility. During this event, the formation and growth of aerosol particles has been observed by a differential mobility analyzer (DMA) / tandem differential mobility analyzer (TDMA) system to characterize the size distribution and size-resolved hygroscopicity of the aerosol. The most number concentration is by the particles smaller than 100 nm, but the integrated number concentrations for over 100 nm increased due to the aerosol growth. Hygroscopic growth factor increase from 1.2 to 1.4 for 25, 50, and 100 nm particles during the nucleating period. This distribution and the aerosol properties derived from the TDMA data were used to calculate the growth rate. Particle growth rates were in the range 1-12 nm/hr.

Investigation of the Optical and Cloud Forming Properties of Pollution, Biomass Burning, and Mineral Dust Aerosol

  • Lee Yong-Seop
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2006.04a
    • /
    • pp.55-56
    • /
    • 2006
  • This thesis describes the use of measured aerosol size distributions and size-resolved hygroscopic growth to examine the physical and chemical properties of several particle classes. The primary objective of this work was to investigate the optical and cloud forming properties of a range of ambient aerosol types measured in a number of different locations. The tool used for most of these analyses is a differential mobility analyzer / tandem differential mobility analyzer (DMA / TDMA) system developed in our research group. To collect the data described in two of the chapters of this thesis, an aircraft-based version of the DMA / TDMA was deployed to Japan and California. The data described in two other chapters were conveniently collected during a period when the aerosol of interest came to us. The unique aspect of this analysis is the use of these data to isolate the size distributions of distinct aerosol types in order to quantify their optical and cloud forming properties. I used collected data during the Asian Aerosol Characterization Experiment (ACE-Asia) to examine the composition and homogeneity of a complex aerosol generated in the deserts and urban regions of China and other Asian countries. An aircraft-based tandem differential mobility analyzer was used for the first time during this campaign to examine the size-resolved hygroscopic properties of particles having diameters between 40 and 586 nm. Asian Dust Above Monterey (ADAM-2003) study was designed both to evaluate the degree to which models can predict the long-range transport of Asian dust, and to examine the physical and optical properties of that aged dust upon reaching the California coast. Aerosol size distributions and hygroscopic growth are measured in College Station, TX to investigate the cloud nucleating and optical properties of a biomass burning aerosol generated from fires on the Yucatan Peninsula. Measured aerosol size distributions and size-resolved hygroscopicity and volatility were used to infer critical supersaturation distributions of the distinct particle types that were observed during this period. The predicted CCN concentrations were used in a cloud model to determine the impact of the different aerosol types on the expected cloud droplet concentration. RH-dependent aerosol extinction coefficients are calculated at a wavelength of 550 nm.

  • PDF

Physical, Chemical and Optical Properties of Fine Aerosol as a Function of Relative Humidity at Gosan, Korea during ABC-EAREX 2005

  • Moon, Kwang-Joo;Han, Jin-Seok;Cho, Seog-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.129-138
    • /
    • 2013
  • The water uptake by fine aerosol in the atmosphere has been investigated at Gosan, Korea during ABC-EAREX 2005. The concentration of inorganic ion and carbon components, size distribution, and light scattering coefficients in normal and dry conditions were simultaneously measured for $PM_{2.5}$ by using a parallel integrated monitoring system. The result of this study shows that ambient fine particles collected at Gosan were dominated by water-soluble ionic species (35%) and carbonaceous materials (18%). In addition, it shows the large growth of aerosol in the droplet mode when RH is higher than 70%. Size distribution of the particulate surface area in a wider size range ($0.07-17{\mu}m$) shows that the elevation of RH make ambient aerosol grow to be the droplet mode one around $0.6{\mu}m$ or the coarse mode one, larger than $2.5{\mu}m$. Hygroscopic factor data calculated from the ratio of aerosol scattering coefficients at a given ambient RH and a reference RH (25%) show that water uptake began at the intermediate RH range, from 40% to 60%, with the average hygroscopic factor of 1.10 for 40% RH, 1.11 for 50% RH, and 1.17 for 60% RH, respectively. Finally, average chemical composition and the corresponding growth curves were analyzed in order to investigate the relationship between carbonaceous material fraction and hygroscopicity. As a result, the aerosol growth curve shows that inorganic salts such as sulphate and nitrate as well as carbonaceous materials including OC largely contribute to the aerosol water uptake.

Sensitivity Test of the Parameterization Methods of Cloud Droplet Activation Process in Model Simulation of Cloud Formation (구름방울 활성화 과정 모수화 방법에 따른 구름 형성의 민감도 실험)

  • Kim, Ah-Hyun;Yum, Seong Soo;Chang, Dong Yeong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.211-222
    • /
    • 2018
  • Cloud droplet activation process is well described by $K{\ddot{o}}hler$ theory and several parameterizations based on $K{\ddot{o}}hler$ theory are used in a wide range of models to represent this process. Here, we test the two different method of calculating the solute effect in the $K{\ddot{o}}hler$ equation, i.e., osmotic coefficient method (OSM) and ${\kappa}-K{\ddot{o}}hler$ method (KK). To do that, each method is implemented in the cloud droplet activation parameterization module of WRF-CHEM (Weather Research and Forecasting model coupled with Chemistry) model. It is assumed that aerosols are composed of five major components (i.e., sulfate, organic matter, black carbon, mineral dust, and sea salt). Both methods calculate similar representative hygroscopicity parameter values of 0.2~0.3 over the land, and 0.6~0.7 over the ocean, which are close to estimated values in previous studies. Simulated precipitation, and meteorological variables (i.e., specific heat and temperature) show good agreement with reanalysis. Spatial patterns of precipitation and liquid water path from model results and satellite data show similarity in general, but on regional scale spatial patterns and intensity show some discrepancy. However, meteorological variables, precipitation, and liquid water path do not show significant differences between OSM and KK simulations. So we suggest that the relatively simple KK method can be a good alternative to the OSM method that requires various information of density, molecular weight and dissociation number of each individual species in calculating the solute effect.