• Title/Summary/Keyword: anodic

Search Result 1,273, Processing Time 0.024 seconds

Novel Methods for Measuring the Surface Hardness of Anodic Oxide Films on Aluminum Alloy (알루미늄 합금 양극산화피막의 표면경도 측정법)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.1
    • /
    • pp.36-42
    • /
    • 2020
  • In this study, two novel methods to measure the surface hardness of anodic oxide films on aluminum alloys are reported. The first method is to impregnate oil-based ink into pores in the anodic oxide film and then to clean the ink on the surface using ethanol, resulting in an impregnation of inks only inside of the pores in anodic oxide film. The second method is to coat the anodic oxide film surface with thin Au layer less than 0.1 ?. Both the ink-impregnating method and Au-coating method provided clear indentation marks on the anodic oxide film surface when it was indented using a pyramidal-diamond penetrator. Thus, Vickers hardness of anodic oxide films on aluminium alloy could be measured successfully and precisely from the anodic film surface. In addition, advantages and disadvantages of the ink-impregnating method and Au-coating method for the measurement of surface hardness of anodic oxide films are discussed.

A STUDY ON COPPER DEPOSITION PROCESS DURING ANODIC OXIDATION OF ALUMINIUM ALLOY

  • Koh, I.S.;Han, S.H.;Shin, D.H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.444-446
    • /
    • 1999
  • The structure and composition of anodic films, formed on 6063 commercial aluminium alloy at constant current density of $1.5A/^dm2$ with various superimposed cathodic current ratio, in the range 0~33%, in the 11% $H_2SO_4$ with various concentration of $CuSO_4{\cdot}5H_2O$, in the range 0~75 g/l, without cathodic current are generally porous-type and no sign of Cu co-deposition appearance, suggesting that cathodic current is an important factor in the Cu co-deposition. Comparison with the anodic film thickness measurement results obtained from anodic film formed by direct anodic current and anodic film formed by superimposed various portion of cathodic current, the portion of cathodic current of input current increases with decrease of anodic film thickness and increases with increase of concentration of $Cu_2S{\;}and{\;}Cu_2O$ in the anodic film.

  • PDF

Anodic Oxidation Treatment Methods of Metals (금속의 양극산화처리 기술)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Anodic oxidation treatment of metals is one of typical surface finishing methods which has been used for improving surface appearance, bioactivity, adhesion with paints and the resistances to corrosion and/or abrasion. This article provides fundamental principle, type and characteristics of the anodic oxidation treatment methods, including anodizing method and plasma electrolytic oxidation (PEO) method. The anodic oxidation can form thick oxide films on the metal surface by electrochemical reactions under the application of electric current and voltage between the working electrode and auxiliary electrode. The anodic oxide films are classified into two types of barrier type and porous type. The porous anodic oxide films include a porous anodizing film containing regular pores, nanotubes and PEO films containing irregular pores with different sizes and shapes. Thickness and defect density of the anodic oxide films are important factors which affect the corrosion resistance of metals. The anodic oxide film thickness is limited by how fast ions can migrate through the anodic oxide film. Defect density in the anodic oxide film is dependent upon alloying elements and second-phase particles in the alloys. In this article, the principle and mechanisms of formation and growth of anodic oxide films on metals are described.

Preparation of Nano Wire by Anodic Oxidation I. Characteristics of Alumina Nano-Template by Anodic Oxidation (양극산화법에 의한 나노와이어 제조I. 알루미나 나노 템플레이트의 특성)

  • Jo, Su-Haeng;O, Han-Jun;Park, Chi-Seon;Jang, Jae-Myeong;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2002
  • Anodic alumina layer can be used as templates for preparation of nano-structured materials, because porous oxide layer on aluminum shows a uniform pore size and a high pore density. In order to find out possibility for template material to prepare nano wire, the effects of the anodic applied potential, anodic time and the temperature of electrolyte on pore diameter of anodic alumina layer were studied using SEM and AFM. The pore diameter of anodic alumina layer increased with applied anodic potential and electrolytic temperature. Especially, the pore diameter of anodic oxide layers formed in chromic acid can be well replicated by widening process in $H_3$$PO_4$solution.

Formation Behavior of Anodic Oxide Films on Al7075 Alloy in Sulfuric Acid Solution (황산용액에서 Al7075 합금 표면의 양극산화피막 형성거동)

  • Moon, Sungmo;Yang, Cheolnam;Na, Sangjo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The present work is concerned with the formation behavior of anodic oxide films on Al7075 alloy under a galvanostatic condition in 20 vol.% sulfuric acid solution. The formation behaviour of anodic oxide films was studied by the analyses of voltage-time curves and observations of colors, morphologies and thicknesses of anodic films with anodization time. Hardness of the anodic oxide films was also measured with anodization time and at different positions in the anodic films. Six different stages were observed with anodiziation time : barrier layer formation (stage I), pore formation (stage II), growth of porous films (stage III), abnormal rapid oxide growth (stage IV), growth of non-uniform oxide films (stage V) and breakdown of the thick oxide films under high anodic voltages (stage VI). Hardness of the anodic oxide films appeared to decrease with increasing anodization time and with the position towards the outer surface. This work provides useful information about the thickness, uniformity, imperfections and hardness distribution of the anodic oxide films formed on Al7075 alloy in sulfuric acid solution.

Bactericidal Effects of Anodic Electrolyzed Water on the Selected Gram-Negative and Gram-Positive Bacteria (선별된 그람음성 및 그람양성 세균에 대한 양극 전리수의 살균효과)

  • Kim, Jum-Ji;Lee, Mi-Young
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1295-1300
    • /
    • 2007
  • The antibacterial effects of anodic electrolyzed water against various bacteria were studied in this investigation. Complete inactivation of Gram-positive and Gram-negative bacteria occurred within 15 s after exposure to anodic electrolyzed water. Moreover, 1/2, 1/5 and 1/10 diluted anodic electrolyzed water by adding deionized water showed strong antibacterial effects. However, the inhibitory effect of anodic electrolyzed water on the anaerobe of Propionibacterium acnes was much weaker than that on the aerobes, including Gram-positive and Gram-negative bacteria. The degraded fragments of E. coli cell were observed upon treating anodic electrolyzed water for 1 min by using scanning electron microscopy.

TEM Study on the HgCdTe/Anodic oxide/ZnS Interfaces (투과전자현미경에 의한 HgCdTe/양극산화막/ZnS 계면 특성에 관한 연구)

  • 정진원;김재묵;왕진석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.121-127
    • /
    • 1995
  • We have analyzed the double insulating layer consisting of anodic oxide and ZnS through TEM experiments. The use of double insulating layer for HgCdTe surface passivation is one of the promising passivation method which has been recently studied deeply and the double insulating layer is formed by the evaporation of ZnS on the top of anodic oxide layer grown in H$_{2}$O$_{2}$ electrolyte. The structure of anodic oxide layer on HgCdTe is amorphous but the structure of oxide layer after the evaporation of ZnS has been changed to micro-crystalline. The interface layer of 150.angs. thickness has been found between ZnS and anodic oxide layer and is estimated to be ZnO layer. The results of analysis on the chemical components of ZnS, the interface layer and anodic oxide layer have showed that Zn has diffused into the anodic oxide layer deeply while Hg has been significantly decreased from HgCdTe bulk to the top of oxide layer. The formation of ZnO interface layer and the change of structure of anodic oxide layer after the evaporation of ZnS are estimated to be defects or to induce the defects which might possibly affect the increase of the positive fixed charges shown in C-V measurements of HgCdTe MIS.

  • PDF

Surface Hardness Measurement of Anodic Oxide Films on AA2024 based an Ink-Impregnation Method

  • Moon, Sungmo;Rha, Jong-joo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.80-86
    • /
    • 2020
  • This paper is concerned with type of imperfections present within the anodic oxide films on AA2024 and surface hardness of the anodic film measured after ink-impregnation. The anodic oxide films were formed for 25 min at 40 mA/㎠ and 15±0.5℃ and 300 rpm of magnet stirring rate in 20% sulfuric acid solution. The ink-impregnation allows clear observations of not only the imperfections within the anodic oxide films but also an indentation mark on the oxide film surface made by a pyramidal-diamond penetrator for the hardness measurement. There were observed four different regions in the anodic oxide films on AA2024 and the surface hardness of the anodic oxide films appeared to be crucially dependent on the type of defects, showing 60~100 Hv on the oxide surface region I with large size black defect, 100~140 Hv on the oxide surface region II with large size grey defect, 140~170 Hv on the oxide surface region III with mall size black and/or grey defects and 170~190 Hv on the oxide surface region IV without defects. The pyramidal indentation marks were observed to be distorted in the regions with a large size black and grey defects, while no distortion of the indentation mark was observed in the regions with small size defects and without visible defects.

Biological Characteristics of Anodic Electrolyzed Water (산성전리수의 생물학적 특성)

  • 김윤경;민병술;민중기;이종권;이윤배;류근걸;이미영
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.2
    • /
    • pp.265-272
    • /
    • 2004
  • Biological characteristics of anodic electrolyzed water were investigated in this study. Linear DNAs which were incubated at $4^\circ{C}$ and $25^\circ{C}$ for 10 mins in the anodic electrolyzed water were degraded about 40% and 50%, respectively. But the DNA was amplified pretty well without any degradation through polymerase chain reaction in the presence of anodic electrolyzed water. Protein degradation hardly occurred in the distilled water during entire incubation time of 7 days, while protein began to be degraded from 4 days in the anodic electrolyzed water. Rice seeds could germinate in the distilled water and anodic electrolyzed water with the same germination ratio, however, the anodic electrolyzed water inhibited the growth of roots and total length of rice seedlings in the soil. Anodic electrolyzed water did not affect the growth curve and cell number of marine alga significantly. The anodic electrolyzed water inhibited the browning of potato by inactivating 50% of polyphenol oxidase activity.

A STUDY ON THE CORROSION OF AMALGAMS IN CHLORIDE SOLUTION (Chloride용액에서의 아말감부식에 대한 연구)

  • Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.502-514
    • /
    • 1998
  • The purpose of this study is to observe the corrosion characteristcs of four dental amalgams(CAULK FINE CUT, CAULK SPHERICAL, DISPERSALLOY, TYTIN) and to determine a function of chloride concentration through the anodic polarization curve obtained by using a potentiostat. After each amalgam alloy and Hg being triturated, the triturated mass was inserted into the cylinderical metal mold, and condensed by hydrolic pressure. Each specimen was removed from the metal mold. 24 hours after condensation, specimens were polished with the emery paper and stored at room temperature for 6 months. The anodic polarization curves were employed to compare the corrosion behaviours of the amalgam m KCl and KCl-NaCl solution, which had chlonde concentration of 0.4 g/l, 0.8 g/l, 1.2 gil, and 1.6 gil at $37^{\circ}C$ with 3-electrode potentiostat. After the immersion of specimen in electrolyte for 1 hour, the potential scan was begun. The potential scan range was - 1500mV ~+800mV(vs. S.C.E.) in the working electrode and the scan rate was 50mV/sec. The results were as follows, 1. The corrosion potential. the potential of anodic current peak, and transpassive potential in the solution of high chloride concentration shifted to more cathodic direction than those in the solution of low concentration, and the current density in the solution of high chloride concentration was higher than that in the solution of low concentration. 2. The corrosion potential, the potential of anodic current peak, and transpassive potential for CAULK FINE CUT amalgam were the most cathodic among the others, and the current density were the highest among the others. 3. In the solution of low chloride concentration, the corrosion potential, the potential of anodic current peak, and transpassive potential for DISPERSALLOY were the most anodic among the others, however in the solution of high chloride concentration, those for TYTIN were the most anodic among the others. 4. The anodic polarization curve for CAULK SPHERICAL was similar to that for high copper amalgams.

  • PDF