• Title/Summary/Keyword: aortic tissues

Search Result 44, Processing Time 0.031 seconds

Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model

  • Zhang, Zhidong;Zou, Gangqiang;Chen, Xiaosan;Lu, Wei;Liu, Jianyang;Zhai, Shuiting;Qiao, Gang
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.218-227
    • /
    • 2019
  • This study was designed to determine the effects of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) on vascular smooth muscle cell (VSMC) apoptosis and extracellular matrix (ECM) disruption in a murine abdominal aortic aneurysm (AAA) model. After injection of PVT1-silencing lentiviruses, AAA was induced in Apolipoprotein E-deficient ($ApoE^{-/-}$) male mice by angiotensin II (Ang II) infusion for four weeks. After Ang II infusion, mouse serum levels of pro-inflammatory cytokines were analysed, and aortic tissues were isolated for histological, RNA, and protein analysis. Our results also showed that PVT1 expression was significantly upregulated in abdominal aortic tissues from AAA patients compared with that in controls. Additionally, Ang II treatment significantly increased PVT1 expression, both in cultured mouse VSMCs and in AAA murine abdominal aortic tissues. Of note, the effects of Ang II in facilitating cell apoptosis, increasing matrix metalloproteinase (MMP)-2 and MMP-9, reducing tissue inhibitor of MMP (TIMP)-1, and promoting switching from the contractile to synthetic phenotype in cultured VSMCs were enhanced by overexpression of PVT1 but attenuated by knockdown of PVT1. Furthermore, knockdown of PVT1 reversed Ang II-induced AAA-associated alterations in mice, as evidenced by attenuation of aortic diameter dilation, marked adventitial thickening, loss of elastin in the aorta, enhanced aortic cell apoptosis, elevated MMP-2 and MMP-9, reduced TIMP-1, and increased pro-inflammatory cytokines. In conclusion, our findings demonstrate that knockdown of lncRNA PVT1 suppresses VSMC apoptosis, ECM disruption, and serum pro-inflammatory cytokines in a murine Ang II-induced AAA model.

Effect of Heme Oxygenase Induction by NO Donor on the Aortic Contractility

  • Kim, Chang-Kyun;Sohn, Uy-Dong;Lee, Seok-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.87-92
    • /
    • 2001
  • Carbon monoxide (CO) binds to soluble guanylate cyclase to lead its activation and elicits smooth muscle relaxation. The vascular tissues have a high capacity to produce CO, since heme oxygenase-2 (HO-2) is constitutively expressed in endothelial and smooth muscle cells, and HO-1 can be greatly up-regulated by oxidative stress. Moreover, the substrate of HO, heme, is readily available for catalysis in vascular tissue. Although the activation of heme oxygenase pathway under various stress conditions may provide a defence mechanism in compromised tissues, the specific role of HO-1-derived CO in the control of aortic contractility still remains to be elucidated. The present study was done to determine the effect of HO-1 induction on the aortic contractility. Thus, the effects of incubation of aortic tissue with S-nitroso-N-acetylpenicillamine (SNAP) for 1 hr on the aortic contractile response to phenylephrine were studied. The preincubation with SNAP resulted in depression of the vasoconstrictor response to phenylephrine. This effect was restored by HO inhibitor or methylene blue but not by NOS inhibitor. The attenuation of vascular reactivity by preincubation with SNAP was also revealed in endothelium-free rings. $AlF4^--evoked$ contraction in control did not differ from that in SNP-treated group. These results suggest that increased production of CO was responsible for the reduction of the contractile response to phenylephrine in aortic ring preincubated with SNAP and this effect of SNAP was independent on endothelium.

  • PDF

Aortic Dissection with Aberrant Origin of Single Coronary Artery -Report of 1 case- (단일 관상동맥 기형이 동반된 급성 대동맥박리의 수술치험)

  • Kim, Woong-Han;Ahn, Hyuk
    • Journal of Chest Surgery
    • /
    • v.27 no.12
    • /
    • pp.1036-1041
    • /
    • 1994
  • Emergency operation was performed in a patient with severe aortic insufficiency caused by type A acute aortic dissection with aberrant high take-off origin of single coronary artery. The single coronary artery was found to arise from an unusual position high in the ascending aorta. Dissection was begun in the aortic root and involved the single coronary ostium. Valve competance was restored by resuspension of the commissures. the false lumen was obliterated with strips of Teflon felt and surgical glue. The aortic tissues were firmly reinforced and sutured. The proximal aortic stump was anatomically reconstructed, and fortunately the aortic valve was preserved and coronary reimplantation avoided. The patient was discharged at postoperative 13 days without specific complications. Postoperative course during the 18 months follow-up was uneventful.

  • PDF

Fatal Aortic Tumor Embolism Presenting as Acute Paraplegia

  • Jin, Sung-Chul;Cho, Do-Sang;Song, Jun-Hyeok
    • Journal of Korean Neurosurgical Society
    • /
    • v.39 no.1
    • /
    • pp.72-74
    • /
    • 2006
  • We report a case of fatal aortic tumor embolism presenting as acute paraplegia. A four-year-old girl was referred from a local hospital with sudden paraplegia and a poor medical condition. A neighbor had noticed her fall from a bike, and she could not walk. She had no previous illness. Emergency spine MRI revealed no remarkable findings. During the process of evaluation, her general condition deteriorated progressively. Chest and abdominal CT showed a large mass in the left lung field, and a diagnosis of aortic occlusion was made. An emergency transfemoral embolectomy was attempted. However, the patency of the aorta was not recovered. On pathological examination of tissues taken from the embolectomy, a pleuro-pulmonary blastoma was found. The patient died 22 hours after the onset of her symptoms. We describe a possible mechanism for the tumor embolism. To the best of our knowledge, this is the first case report of aortic occlusion caused by an embolic malignancy, presenting as acute paraplegia.

Effect of Lophatherum gracile on the mechanism of vasorelaxation in thoracic aorta (담죽엽 추출물의 혈관이완 기전에 대한 연구)

  • Kim, Hye-Yoom;Li, Xiang;Lee, Yun-Jeong;Seo, Hwan-Ho;Cho, Nam-Geun;Kang, Dae-Gill;Lee, Ho-Sub
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.175-186
    • /
    • 2009
  • The vasorelaxant effect of an extract of Lophatherum gracile Brongn (ELB) and its possible action mechanism were ascertained in aortic tissues isolated from rats. ELB relaxed endothelium-intact thoracic aorta in a dose-dependent manner. However, the induced vascular relaxation was abolished by removal in endothelium of the thoracic aorta. Pretreatment of endothelium-intact vascular tissues with $N^G$-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]-oxadiazole-[4,3-$\alpha$]-quinoxalin-1-one (ODQ) significantly inhibited vascular relaxation induced by ELB. Moreover, ELB significantly increased cGMP production in aortic tissues, which was blocked by pretreatment with L-NAME or ODQ. The vasorelaxant effect of ELB was attenuated by tetraethylammonium (TEA), and glibenclamide. ELB-induced vasorelaxation was not blocked by atropine, propranolol, indomethacin, verapamil, and diltiazem. Taken together, the present study demonstrates that ELB dilates vascular smooth muscle via an endothelium-dependent NO-cGMP signaling pathway, which may be at least in part related with the function of $K^+$ channels.

  • PDF

Study on the Mechanism of Vascular Relaxation of Ethanol Extract of Persicaria Perfoliata H. Gross (하백초 에탄올 추출물의 혈관이완 기전에 대한 연구)

  • Kim, Hye-Yoom;Choi, Byung-Sun;Choi, Eun-Hee;Cui, Hao-Zhen;Kang, Dae-Gill;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.389-396
    • /
    • 2009
  • The ethanol extract of Persicaria perfoliata (EPP) induced relaxation of the phenylephrine-precontracted aorta in a dose-dependent manner, which was abolished by removal of functional endothelium. Pretreatment of the aortic tissues with NG-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4}-oxadiazole-[4,3-${\alpha}$)-quinixalin-1-one (ODQ) inhibited the relaxation induced by EPP. However, EPP-induced relaxation was not blocked by pretreatment with indomethacine, glibenclamide, tetraethylammonium (TEA), atropine, or propranolol. Incubation of endothelium-intact thoracic aortic ring with EPP increased the production of cGMP, which was also blocked by pretreatment with L-NAME or ODQ. These results suggest that EPP dilates vascular smooth muscle via endothelium-dependent NO/cGMP signaling.

Extracellular Matrix of Fresh and Cryopreserved Porcine Aortic Tissues

  • Shon, Yun-Hee
    • BMB Reports
    • /
    • v.30 no.2
    • /
    • pp.106-112
    • /
    • 1997
  • The effect of cryopreservation on extracellular matrix was studied with the ultimate objective of permiting a prediction of the tendency of aorta conduit tissue to calcify following transplantation. Cryopreserved and fresh porcine aorta conduit tissues were extracted using guanidine-hydrochloride (Gdn-HCl) followed by sequential digestion of the tissues with collagenase, elastase, and papain. Glycosaminoglycans (GAGs) of the proteoglycans (PGs) were isolated and quantitated. Gdn-HCl extracted about 61% and 62% of the total GAG (proteoqlycan) material from cryopreserved and fresh tissues, respectively. Collagenasesolubilized proteoglycans from Gdn-HCl extracted tissue represented 20% and 13%, respectively, of the total GAGs present in cryopreserved and fresh tissues. Subsequent elastase hydrolysis of collagenase-digested tissue released about 11% of total GAGs from cryopreserved tissue and 16% from fresh tissue. The remaining 8%, from cryopreserved tissue, and 9%, from fresh tissue, of the total GAGs were obtained after using a papain hydrolysis. There was essentially no difference between fresh and cryopreserved tissues in the relative distribution of proteoglycans in the extracts and digestions except in the initial digestion step where more proteoglycans were obtained from collagenase solubilization of cryopreserved tissue than fresh tissue (p<0.05). The histologic status of the fresh and cryopreserved porcine aortic conduit did not differ markedly. The normal tissue architecture was not affected markedly by the cryopreservation procedure as neither alteration of elastic structure, fibrous proteins nor alteration of nuclear distribution or smooth muscle cell morphology was detected. Quantitative tissue mineral studies revealed that the mean calcium content of the cryopreserved aorta conduit tissue $(165{\pm}3\;{\mu}g/g\;wet\;tissue)$ was higher than that of the fresh tissue $(105{\pm}4\;{\mu}g/g\;wet\;tissue)$ $(p<0.05)$. The mean phosphorus content was $703{\pm}35\;{\mu}g$ wet tissue from cryopreserved tissue and $720{\pm}26\;{\mu}g$ wet tissue from fresh tissue. The study indicates that there is no significant alteration in the distribution of PGs in properly cryopreserved tissue, but the total calcium level appears to be increased in tissue cryopreserved by the cryopreservation process used in this study.

  • PDF

Effects of Lipopolysaccharide-Induced Heme Oxygenase and Carbon Monoxide Production on the Aortic Contractility (Lipopolysaccharide에 의한 Heme Oxygenase Induction과 Carbon Monoxide생성이 혈관수축력에 미치는 영향)

  • 장우성;손의동;이석용
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.78-84
    • /
    • 2001
  • Heme oxygenase is a rate-limiting enzyme in heme catabolism that cleaves heme to form biliverdin, iron, and carbon monoxide. Heme oxygenase-1 is expressed in many types of cells and tissues and is highly induced in response to oxidative stress. Carbon monoxide, one of the products of heme oxygenase, can stimulate soluble guanylate cyclase and dilate the vascular smooth muscle. So, the induction of heme oxygenase by lipopolysaccharide (LPS)-induced oxydative stress and the effect of the resultant carbon monoxide on aortic contractility were examined in this study. Zinc protoporphyrine IX (ZnPP), a inhibitor of heme oxygenase, elicited weak contraction of thoracic aortic ring, and this effect was more potent in aorta of LPS-treated rats than control and was blocked by methylene blue. The hyperreactivity to ZnPP in LPS-treated group was blocked by co-treatment with aminoguanidine. In the aortic ring of LPS-treated rats, ZnPP didn't change the vasoreactivity to phenylephrine or acetylcholine. ZnPP elicited hyper-tensive effect in concious rats, and pretreatment with LPS did not affect this effect. Prazosin significantly diminished the hypertensive effect of ZnPP. These results indicate that LPS induced heme oxygenase in aotra, and the resultant carbon monoxide diminished the aortic reactivity to vasoconstrictor.

  • PDF

Infective Endocarditis Involving Aortic Valve, Mitral Valve, Tricuspid Valve, and luterventricular Septum -A Case Report (대동맥판막, 승모판막, 삼첨판막과 심실중격을 침범한 심내막염 -1예 보고-)

  • 박종빈;서동만
    • Journal of Chest Surgery
    • /
    • v.30 no.2
    • /
    • pp.200-204
    • /
    • 1997
  • This is a report of a successful management of a patient with infective endocarditis involving native aortic valve, mitral valve, tricuspid valve, and Interventric lar septum. A 16 year-old patient who underwent VSD patch closure, and aortic valvuloplasty at the age of 1 1 years showed Intractable congestive heart failure during antibiotics treatment for infective endocarditis. Operative findings revealed that there were large defect along the previous patch, aortic regurgitation with multiple perforations and vegetations, mitral regurgitation with vegetation, aortic paraannular abscess, interventricular myocardial abscess, and tricuspid regurgitation with perforations and vegetations. We reconstructed the interventricular defect with Dacron patch extending to the aortic valve annulus after radical debridement of all infected or devitalized tissues, and could implant aortic valve by anchoring to the reconstructed Dacron patch. Mitral valve was replaced and tricuspid valve was repaired with patient's own pericardium. The patient was discharged after antibiotics treatment for 6 weeks and in good condition without any sequelae for 12 months.

  • PDF

Adventitial Fibroblast Abormality in Thoracic Aortic Aneurysms and Aortic Dissections

  • Suh, Jong-Hui;Yoon, Jeong-Seob;Kim, Hwan-Wook;Jo, Keon-Hyon
    • Journal of Chest Surgery
    • /
    • v.44 no.6
    • /
    • pp.406-412
    • /
    • 2011
  • Background: Development of thoracic aortic aneurysms and aortic dissections (TAAD) is attributed to unbearable wall tension superimposed on defective aortic wall integrity and impaired aortic repair mechanisms. Central to this repair mechanisms are well-balanced and adequately functional cellular components of the aortic wall, including endothelial cells, smooth muscle cells (SMCs), inflammatory cells, and adventitial fibroblasts. Adventitial fibroblasts naturally produce aortic extracellular matrix (ECM), and, when aortic wall is injured, they can be transformed into SMCs, which in turn are involved in aortic remodeling. We postulated the hypothesis that adventitial fibroblasts in patients with TAAD may have defects in ECM production and SMC transformation. Materials and Methods: Adventitial fibroblasts were procured from the adventitial layer of fresh aortic tissues of patients with TAAD (Group I) and of multi-organ donors (Group II), and 4-passage cell culture was performed prior to the experiment. To assess ECM production, cells were treated with TNF-${\alpha}$ (50 pM) and the expression of MMP-2/MMP-3 was analyzed using western blot technique. To assess SMC transformation capacity, cells were treated with TGF-${\beta}1$ and expression of SM ${\alpha}$-actin, SM-MHC, Ki-67 and SM calponin was evaluated using western blot technique. Fibroblasts were then treated with TGF-${\beta}1$ (10 pM) for up to 10 days with TGF-${\beta}1$ supplementation every 2 days, and the proportion of transformed SMC in the cell line was measured using immunofluorescence assay for fibroblast surface antigen every 2 days. Results: MMP-3 expression was significantly lower in group I than in group II. TGF-${\beta}1$-stimulated adventitial fibroblasts in group I expressed less SM ${\alpha}$-actin, SM-MHC, and Ki-67 than in group II. SM-calponin expression was not different between the two groups. Presence of fibroblast was observed on immunofluorescence assay after more than 6 days of TGF-${\beta}1$ treatment in group I, while most fibroblasts were transformed to SMC within 4 days in group II. Conclusion: ECM production and SMC transformation are compromised in adventitial fibroblasts from patients with TAAD. This result suggests that functional restoration of adventitial fibroblasts could well be a novel approach for the prevention and treatment of TAAD.