• Title/Summary/Keyword: atmospheric noise

Search Result 141, Processing Time 0.029 seconds

Prediction of Wind Farm Noise with Atmospheric Stability (대기 안정 상태에 따른 풍력 단지 소음 전파 예측)

  • Son, Eunkuk;Lee, Seunghoon;Jeon, Minu;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.42.2-42.2
    • /
    • 2011
  • Noise generated from wind turbines has been predicted by numerical methods. Sound pressure level(SPL) on the turbines is predicted after aerodynamic analysis is carried out by Wind Turbine Flow, Aeroacoustics and Structure analysis (WINFAS) code. The level of each panel of acoustic sphere is determined by the sum of tonal, turbulence ingestion and airfoil self noise. With the noise source database, the acoustic sphere, SPL on the ground is calculated using the model based on acoustic ray theory. The model has been designed to consider the effects on the condition of terrain and atmosphere. The variations of SPL on the ground occur not only because of the different source level but also because of the nonuniform distributions of the sound speed along the height. Hence, the profile of an effective sound speed which is the sum of the contribution of sound speed to a temperature gradient and a wind speed variation is used by the theory based on atmospheric stability. With the integrated numerical method, the prediction of sound propagation on the wind farm is carried out with the states of the atmospheric stability.

  • PDF

Numerical Study on the Link Range of the IM/DD Wireless Optical Communication at 830[nm] Optical Wavelength using Galilean Optics (갈릴리안 광학계를 사용한 IM/DD 광무선통신 시스템에서 830[nm] 광파장에 대한 전송거리 제한 해석)

  • Hong, Kwon-Eui;Ko, Sung-Won;Cho, Jung-Whan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.123-129
    • /
    • 2011
  • In terrestrial wireless optical communication links, atmospheric effects including turbulence, absorption and scattering have significant impact on the system performance. Based on the analysis of transmission in atmospheric channel concerning 830[nm] wavelength diode laser beam, performance of free space optical (FSO) link utilizing Galilean optics as a laser beam transmitting and receving optics, PIN photodiode as a detecting device. In this paper we designed optical link equation for received optical power and we analyze the atmospheric effects on the signal to noise ratio (SNR) and bit error rate (BER) of an terrestrial FSO system. We show that the possible communication distance for BER=$10^{-9}$ in proposed adverse atmospheric conditions.

eLoran Signal Strength and Atmospheric Noise Simulation over Korea

  • Rhee, Joon Hyo;Seo, Jiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.2
    • /
    • pp.101-108
    • /
    • 2013
  • GPS is the most widely-used Positioning, Navigation, and Timing (PNT) system. Since GPS is an important PNT infrastructure, the vulnerability of GPS to signal jamming has received significant attention. Especially, South Korea has experienced intentional high-power jamming from North Korea for the past three years, and thus realized the necessity of a complementary PNT system. South Korea recently decided to deploy a high-power terrestrial navigation system, eLoran, as a complementary PNT system. According to the plan, the initial operational capability of the Korean eLoran system is expected by 2016, and the full operational capability is expected by 2018. As a necessary research tool to support the Korean eLoran program, an eLoran performance simulation tool for Korea is under development. In this paper, the received signal strength, which is necessary to simulate eLoran performance, from the suggested Korean eLoran transmitters is simulated with the consideration of effective ground conductivities over Korea. Then, eLoran signal-to-noise ratios are also simulated based on atmospheric noise data over Korea. This basic simulation tool will be expanded to estimate the navigation performance (e.g., accuracy, integrity, continuity, and availability) of the Korean eLoran system.

Noise Reduction Method for Particle Measurement System using Beta-ray Absorption Method (베타선 흡수법을 이용하는 미세먼지 측정시스템을 위한 잡음제거 방법)

  • Choi, Hun;Sohn, Sang-Wook;Bae, Hyeon-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1706-1712
    • /
    • 2012
  • The Beta-ray absorption method (BAM) gives a good solution for measuring the mass concentration of atmospheric particles(PM10 and PM2.5). To determine particular matters (PM) concentration, a ratio of the number of detected beta-ray intensity passing through the clean filter and the dust-sampled filter is used. These intensity data measured in air pollution monitoring such as PM10 and PM2.5 usually contained the additive noise(thermal noise, power supply noise and etc.). Therefore, the estimation performance of mass concentration can be deteriorated by these noises. In this paper, we present a new noise reduction method that is essentially required to develope an automatic continuous PM monitoring system using beta-ray absorption method. By combining the block data averaging technique and curve fitting, in the proposed method, the additive noise can be reduced in the measured data. To evaluate the performance of the proposed method, computer simulations were performed with computer generated signals as the input.

Evaluation of One-particle Stochastic Lagrangian Models in Horizontally - homogeneous Neutrally - stratified Atmospheric Surface Layer (이상적인 중립 대기경계층에서 라그랑지안 단일입자 모델의 평가)

  • 김석철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.397-414
    • /
    • 2003
  • The performance of one-particle stochastic Lagrangian models for passive tracer dispersion are evaluated against measurements in horizontally-homogeneous neutrally-stratified atmospheric surface layer. State-of-the-technology models as well as classical Langevin models, all in class of well mixed models are numerically implemented for inter-model comparison study. Model results (far-downstream asymptotic behavior and vertical profiles of the time averaged concentrations, concentration fluxes, and concentration fluctuations) are compared with the reported measurements. The results are: 1) the far-downstream asymptotic trends of all models except Reynolds model agree well with Garger and Zhukov's measurements. 2) profiles of the average concentrations and vertical concentration fluxes by all models except Reynolds model show good agreement with Raupach and Legg's experimental data. Reynolds model produces horizontal concentration flux profiles most close to measurements, yet all other models fail severely. 3) With temporally correlated emissions, one-particle models seems to simulate fairly the concentration fluctuations induced by plume meandering, when the statistical random noises are removed from the calculated concentration fluctuations. Analytical expression for the statistical random noise of one-particle model is presented. This study finds no indication that recent models of most delicate theoretical background are superior to the simple Langevin model in accuracy and numerical performance at well.

Survey on Air Pollution in Underground Commercial Floor of Pusan Areas (부산지역 지하상가의 대기오염도에 관한 조사 연구)

  • 이채언;문덕환;조병만;김준연;배기철
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.22-32
    • /
    • 1989
  • In order to assess the level of atmospheric pollution and to contribute the health improve ment of residents in Pusan, the authors measured the $CO, SO_2, NO_2, TSP, Noise, Pb, Cd, Cr and V$ level at 3 place by time from Jan. 1988 to Feb. 1988. THe places were Kukje, Daehyeon, Pujeon underground commercial floor. The results were as follows; 1. The range of concentration of air pollutants (1) CO : 0.5 - 3.0 ppm (2) $SO_2$ : 0.012 - 0.360 ppm (3) $NO_2$ : 0.018 - 0.089 ppm (4) TSP : 30 - 330 $\mug/m^3$ (5) Pb : 0.219 - 3.116 $\mug/m^3$ (6) Cd : 0.000 - 0.070 $\mug/m^3$ (7) Cr : 0.378 - 4.098 $\mug/m^3$ (8) V : 0.000 - 1.010 $\mug/m^3$ (9) Noise : 47 - 77 dB(A) 2. The level of all air pollutants were higher in the afternoon or night than in the morning. 3. The mean concentration of $SO_2$ in all places exceede the ambient air quality standard of $SO_2$,.

  • PDF

DEVELOPMENT OF ATMOSPHERIC CORRECTION ALGORITHM FOR HYPERSPECTRAL DATA USING MODTRAN MODEL

  • Kim, Sun-Hwa;Kang, Sung-Jin;Ji, Jun-Hwa;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.619-622
    • /
    • 2006
  • Atmospheric correction is one of critical procedures to extract quantitative information related to biophysical variables from hyperspectral data. In this study, we attempted to generate the water vapor contents image from hyperspectral data itself and developed the atmospheric correction algorithm for EO-1 Hyperion data using pre-calculated atmospheric look-up-table (LUT) for fast processing. To apply the new atmospheric correction algorithm, Hyperion data acquired June 3, 2001 over Seoul area is used. Reflectance spectrums of various targets on atmospheric corrected Hyperion reflectance images showed the general spectral pattern although there must be further development to reduce the spectral noise.

  • PDF

Performance of All-Optical Multihop RoFSO Communication System over Gamma-Gamma Atmospheric Turbulence Channels

  • Zong, Kang;Zhu, Jiang
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.437-443
    • /
    • 2015
  • In this paper, we analyze the performance of the all-optical multihop radio over a free space optical (RoFSO) communication system with amplify-and-forward (AF) relays under varying weather conditions. The proposed channel model considers the propagation loss, attenuation and atmospheric fading modeled by the Gamma-Gamma (GG) distribution. Both the amplified spontaneous emission (ASE) noise in the all-optical relays and the background noise projected onto receiver apertures have been considered in the analysis. The lower bound analytical expressions for the end-to-end bit error rate (BER) and outage probability are derived for the multihop system employing the all-optical relays with the full channel state information (CSI). Meanwhile, the exact results for BER and outage probability are obtained via Monte Carlo simulation. Results indicate the performance of the proposed system will be improved by the multihop transmission technology. For a fixed number of relays, the BER and outage probability will be increased with the deterioration of the weather conditions.

Absolute Atmospheric Correction Procedure for the EO-1 Hyperion Data Using MODTRAN Code

  • Kim, Sun-Hwa;Kang, Sung-Jin;Chi, Jun-Hwa;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2007
  • Atmospheric correction is one of critical procedures to extract quantitative information related to biophysical variables from hyperspectral imagery. Most atmospheric correction algorithms developed for hyperspectral data have been based upon atmospheric radiative transfer (RT) codes, such as MODTRAN. Because of the difficulty in acquisition of atmospheric data at the time of image capture, the complexity of RT model, and large volume of hyperspectral data, atmospheric correction can be very difficult and time-consuming processing. In this study, we attempted to develop an efficient method for the atmospheric correction of EO-1 Hyperion data. This method uses the pre-calculated look-up-table (LUT) for fast and simple processing. The pre-calculated LUT was generated by successive running of MODTRAN model with several input parameters related to solar and sensor geometry, radiometric specification of sensor, and atmospheric condition. Atmospheric water vapour contents image was generated directly from a few absorption bands of Hyperion data themselves and used one of input parameters. This new atmospheric correction method was tested on the Hyperion data acquired on June 3, 2001 over Seoul area. Reflectance spectra of several known targets corresponded with the typical pattern of spectral reflectance on the atmospherically corrected Hyperion image, although further improvement to reduce sensor noise is necessary.