• Title/Summary/Keyword: bath additive

Search Result 61, Processing Time 0.027 seconds

Effects of Electrodeposition condition on the fracture characteristics of 80Sn-20Pb electrodeposits aged at 15$0^{\circ}C$ (15$0^{\circ}C$에서 시효처리한 80Sn-20Pb 합금 도금층의 파괴특성에 전착조건이 미치는 영향)

  • 김정한;서민석;권혁상
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.5
    • /
    • pp.292-302
    • /
    • 1994
  • Alloy deposits of 80Sn-20Pb, electroplated on Cu-based leadframe alloy from an organic sulfonate bath were aged at $150^{\circ}C$ to form intermetallic phases between substrate and deposit, and effects of the deposit morphology, influenced by deposition conditions, on the fracture resistance of the 80Sn-20Pb deposit aged at $150^{\circ}C$ were examined. The growth rate of intermetallic compound layer on aging depended on the microstructure of deposit ; it was fastest in deposit formed using pulse current in bath without grain refining additive, but slowest in deposit formed using dc current in bath containing grain refining additive in spite of similar structure with equivalent grain size. The grain refining additive incorporated in electrodeposit appears to inhibit diffusion of atoms on aging, resulting in slow growth of intermetallic layer in the thickness direction but substantial growth in the lateral one. Density of surface cracks that were occurring when samples were subjected to the $90^{\circ}$-bending test increased with increasing the thickness of intermatallic layer on aging. For the same aged samples, the surface crack density of the sample electrodeposited from a bath containing the grain refining additive was the least due to the inhibiting effect of the additive incorporated into the deposit during electrolysis on atomic diffusion.

  • PDF

The Effects of Copper Electroplating Bath on Fabrication of Fine Copper Lines on Polyimide Film Using Semi-additive Method (Semi-additive 방법을 이용한 폴리이미드 필름 상의 미세 구리배선 제작 시 도금액의 영향)

  • Byun Sung-Sup;Lee Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.2 s.39
    • /
    • pp.9-13
    • /
    • 2006
  • The copper lines in COF are usually fabricated by subtractive method. As the width of lines are smaller, the subtractive method has a lateral etching problems. In semi-additive method, copper lines are fabricated by lithographic technique followed by electroplating method. Fine line patterns of $10-40{\mu}m$ were used for this study. Two different types of thick photoresist, AZ4620 and PMER900, were employed for PR mold. Copper lines were fabricated by electroplating method. The crack were found in fine copper lines due to high residual stress when normal copper electroplating bath were used. The via filling copper electroplating bath were replaced the normal electroplating bath and then cracks were not found in the fine copper lines. During substrate etching, the lateral etching of copper lines were not occurred.

  • PDF

Evaluation of Morphology and Water Flux for Polysulfone Flat Sheet Membrane with Conditions of Coagulation Bath and Dope Solution (응고조와 도프조성에 따른 폴리술폰 평막의 모폴로지 및 수투과도 평가)

  • Woo, Seung Moon;Chung, Youn Suk;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.258-264
    • /
    • 2012
  • In this study, to research effect of coagulation bath and composition of dope solution, polysulfone flat sheet membrane was fabricated by phase inversion method. PEG and PVP were used as additive. Concentration of polymer and additive, composition of coagulation bath was controlled to prepare flat sheet membrane. And then the morphology and water flux of prepared membrane were measured by FE-SEM and water flux testing apparatus. The highest value of water flux was measured at the membrane prepared under a 15 wt% PSF, 25 wt% PEG conditions, and water as coagulation bath. The pure water flux of the membrane composed of PSf/PEG was drastically decreased with increasing amount of DMAc. We confirmed that change of amount in additive and composition in coagulation bath influence the morphology and water flux performance of the membrane.

Effect of additives on surface properties of Zn-Ni alloy Coating (Zn-Ni 합금전기도금강판의 표면특성에 미치는 첨가제 영향)

  • 김현태;장삼규;정원섭
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.4
    • /
    • pp.191-198
    • /
    • 1998
  • The effect of the additives on the Zn-Ni alloy electrocrystallization from a chloride bath was investigated by means of electrochemical methodes, scanning electron microscopy and measurement of surface appearancd, X-ray diffraction patterns. The additives thestd ware the Saccharin, surfactant of naptalene-derivative and mixed additive, The resistance of electrodeposit increased by adding the additives, whera the effect of additives on resistance was different with current density roughness, apperarance and morphology of deposit were also influenced by the type of additive. The deposir with fine, compact grains as well as good surface roughness and appearance was obtained from the mixed-additive added bath.

  • PDF

A study on the Additive Decomposition Generated during the Via-Filling Process (Via-Filling 공정시 발생하는 첨가제 분해에 관한 연구)

  • Lee, Min Hyeong;Cho, Jin Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.153-157
    • /
    • 2013
  • The defect like the void or seam is frequently generated in the PCB (Printed Circuit Board) Via-Filling plating inside via hole. The organic additives including the accelerating agent, inhibitor, leveler, and etc. are needed for the copper Via-Filling plating without this defect for the plating bath. However, the decomposition of the organic additive reduces the lifetime of the plating bath during the plating process, or it becomes the factor reducing the reliability of the Via-Filling. In this paper, the interaction of each organic additives and the decomposition of additive were discussed. As to the accelerating agent, the bis (3-sulfopropyl) disulfide (SPS) and leveler the Janus Green B (JGB) and inhibitor used the polyethlylene glycol 8000 (PEG). The research on the interaction of the organic additives and decomposition implemented in the galvanostat method. The additive decomposition time was confirmed in the plating process from 0 Ah/l (AmpereHour/ liter) to 100 Ah/l with the potential change.

Material Properties of Ni-P-B Electrodeposits for Steam Generator Tube Repair

  • Kim, Dong Jin;Seo, Moo Hong;Kim, Joung Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.112-117
    • /
    • 2004
  • This work investigated the material properties of Ni-P-B alloy electrodeposits obtained from a Ni sulfamate bath as a function of the contents of the P and B sources($H_3PO_3$ and dimethyl amine borane complex(DMAB), respectively) with/without additives. Chemical composition, residual stress, microstructure and micro hardness were investigated using ICP(inductively coupled plasma) mass spectrometer, flexible strip, XRD, TEM and micro Vickers hardness tester, respectively. From the results of the compositional analysis, it was observed that P and B are incorporated competitively during the electrodeposition and the sulfur from the additive is codeposited into the electrodeposit. The measured residual stress value increased in the order of Ni, Ni-P, Ni-B and Ni-P-B electrodeposits indicating that boron affects the residual tensile stress greater than phosphorus. As the contents of the alloying element sources of P and B increased, crystallinity and the grain size of the electrodeposit decreased. The effect of boron on crystallinity and grain size was also relatively larger than the phosphorus. It can be explained that the boron with a smaller atomic radius contributes to the increase of residual stress in the tensile direction and the larger restraining force against the grain growth more significantly than the phosphorus with a larger atomic radius. Introduction of an additive into the bath retarded crystallization and grain growth, which may be attributed to the change of the grain growth kinetics induced by the additive adsorbed on the substrate and electrodeposit surfaces during electrodeposition.

Effects of Stabilizing Additives on Electroless Copper Deposition (무전해 동 도금용액 속에서 안정제의 역할)

  • 최순돈;박범동
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.4
    • /
    • pp.173-180
    • /
    • 1992
  • The effects of the stabilizing additives such as NaCN, 2-MBT and Thiourea on bath decom-position, plating rate and surface morphology have been studied. Bath stability was increased in the order of an additive-free bath, and NaCN-, 2-MBT-, and Thiourea-stabilized baths. The sta-bilizing effects may be attributed to the stability of Cu(II) -complexes. The plating rate is the re-verse order of the bath stability. Accelerative effect of 2-MBT in proper quantity(0.3mg/$\ell$) may be explained by visualizing it absorbed through benzene ring or sulfur atom on portions of the sub-strates. The strong bond of the complexing part of the molecule to nearby chelated copper ions would tend to accelerate plating by making it easier for the Cu2+ -ligand bond to be broken. Sur-face morphologies of copper deposits depend on the bath additives. Electroless copper deposits from the 2-MBT stabilized baths are finer than the deposits from the NaCN- and Thiourea- stabi-lized baths due to the strong adsorption on the substrates.

  • PDF

The Effect of Grain Refiner on Ni-Fe-P Alloy Electrodeposition (Ni-Fe-P 합금전착에 미치는 Grain Refiner의 영향)

  • 서무홍;김동진;김정수
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.437-443
    • /
    • 2003
  • The effects of additive(grain refiner, GR) on process efficiency of the Ni-Fe-P alloy electrodeposition and the material properties of the deposit were investigated. Electrochemical properties of the deposits were investigated using polarization and electrochemical impedance techniques, and the material properties of the deposits were characterized through inductively coupled plasma(ICP), spiral contractometer, XRD, SEM and TEM. When the additive was added into the electrodeposition bath, current efficiency, Ni content and corrosion resistance of the deposit increased, whereas residual stress, surface roughness and grain size of the deposit decreased.

Effects of Herbal Bath on Acetic Acid-induced Somato-visceral Pain in Mice (현호색, 창출, 천수근 약욕이 체성내장통에 미치는 영향)

  • Kim, Ick-Hwan;Lee, Taeck-Hyun;Kim, Chang-Ju;Lee, Choong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.642-650
    • /
    • 2006
  • As an effective non-pharmacological method of pain relief, hydrotherapy was widely used. And bath additive has been used for enhancing the efficacy of hydrotherapy, In the present study, as a bath additive, the analgesic activity of HAC, which composed of Corydalis turtschaninovii, Atractylodes japonica, and Harpagophytum procumbens(HAC), was investigated in the ventrolateral periaqueductal gray (VIPAG), lateral PAG (IPAG), central nuclei of amygdala (CeA), and the paraventricular nucleus of the hypothalamus (PVN) in mice, using writhing test and immunohistochemistry for c-Fos. Male C57BU6 mice weighing $25{\;}{\pm}{\;}2g$ (8 weeks of age) were used for this experiment. The animals were divided into five groups: the control group, the acetic acid treatment group, the acetic acid treatment and 0.01 g/L HAC-immersed group, the acetic acid treatment and 0.1 g/L HAC-immersed group, and the acetic acid treatment and 1.0 g/L HAC-immersed group. To induce somato-visceral pain in the experimental animals, a single intraperitoneal (i.p.) injection of acetic acid was administrated to each animal, and the animals of the control group received injections of equivalent doses of normal saline. The animals of the HAC-immersed groups were immersed the water with HAC powder at the respective doses deep enough to cover the mice body, and those of the control group and the acetic acid treatment group immersed the water without HAC powder at 10 min immediately after the acetic acid injection. Our present study has shown that the HAC reduced the acetic acid-induced abdominal constrictions and the acetic acid-Induced increase of numbers of c-Fos-positive cells in the VIPAG, IPAG, PVN, and CeA. The most potent analgesic effect appeared with the treatment of 1.0 g/L KB-immersed group. Based on our present results, it is very possible that HAC can be a potent therapeutic bath additive for alleviating pain without the fear of addiction to the drugs and side-effects associated with the prescription of multiple analgesic drugs.

Effects of Naphthalene Trisulfonic Acid on the Surface Properties of Electrodeposited Ni Layer (Naphthalene Trisulfonic Acid가 니켈 전착층의 표면 특성에 미치는 영향)

  • Lee Joo-Yul;Kim Man;Kwon Sik-Chol;Kim Jung-Hwan;Kim In-gon
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.13-17
    • /
    • 2006
  • The effects of an organic additive, naphthalene trisulfonic acid (NTSA), contained in the nickel sulfamate bath on the surface properties of the electrodeposited nickel layer were investigated through electrochemical technique, x-ray diffraction analysis, and microscopic observation. The addition of NTSA facilitated the oxidation process of electrodeposited nickel layer during anodic scan and also increased the hardness and internal stress of the nickel film as the applied current density became higher. It seems that NTSA modulated the deposit structure during electrodeposition and so induced higher distribution of (110) orientation with respect to (200). With the increase of the NTSA in the bath, nickel layer was formed in small grain size, which resulted in enhanced surface evenness and brightness.