• Title/Summary/Keyword: bending strain

Search Result 878, Processing Time 0.028 seconds

Determination of winding diameter based on bending strain analysis for REBCO coated conductor tapes

  • Leon, M.B. De;Dedicatoria, M.J.;Shin, H.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.8-11
    • /
    • 2012
  • In order to recognize the allowable bending diameter in coils, the strain as function of diameters is evaluated. The irreversible strain limits of $I_c$ in the easy and hard bending modes were measured. Strains were calculated at the coating film in the easy bending and at outer edge or inner edge in the hard bending of the CC tape, respectively. The tape geometry subjected to bending procedures is considered from the current industrial spool winding operation. Through the linear superposition of strain induced in different bending modes regarding the expressions, the appropriate design for critical bending diameter is suggested. Results proved that the existence of buckling resulting from bending in hard direction when applied strain exceeded 0.6% is possible. The depicted results showed that the strain limit as a viable parameter should be considered for future purposes.

Effect of Bending Test Procedure on the Degradation Behavior of Critical Current in ReBCO Coated Conductor Tapes

  • Shin, H.S.;Dedicatoria, M.J.;Lee, N.J.;Oh, S.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.12-15
    • /
    • 2009
  • The $I_c$ degradation behavior of critical current in differently processed YBCO and SmBCO CC tapes with IBAD template has been investigated. It has been known that the residual strain in the CC tape will influence the shape of the $I_c$-strain window; $I_c$ may show a peak value if there exist a residual strain induced in the tape during manufacturing. The difference of residual strain may be resulted from the adopted different deposition techniques. In this study, bending test of CC tapes has been done using the Goldacker bending test rig which can produce both compressive and tensile bending strain continuously or alternately to the sample. For SmBCO CC tapes, in continuous compressive bending test, $I_c$ showed a minimal increase and did not degrade up to the largest strain that can be applied using the bending rig equivalent to 1.15% based on the sample thickness. However, in the case of alternate application of compressive and tensile bending strain, $I_c$ showed a larger degradation and a lower reversible limit when compared with the case of continuous application of the bending strain. When $I_c$ started to degrade significantly at the tension side, the reversibility ended, also at the compression side which is resulted from the permanent deformation like delamination or cracks that was induced due to tensile bending strain.

Finite Element Model based on Strain Tests for Predicting Bending Strength of Small Gears for Aircraft

  • Kim, Taehyung;Seok, Taehyeon;Seol, Jin-woon;Lee, Byung-ho;Kwon, Byung-gi;Choi, Jong-yoon
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.91-99
    • /
    • 2020
  • This study proposes a finite element (FE) model for predicting the bending strength of small gears used in electro-mechanical actuators for aircraft. First, a strain gauge was attached to the tooth root of test gear, and the strain was measured. Subsequently, the FE model was applied to calculate the strain of the test gear, and the modeled strain was compared with the experimental strain. The results confirmed that the FE strain was very close to the experimental strain and the FE model was valid. This FE model was extended to the bending strength analysis of several small gear tooth models. The bending strengths of all the tooth models were almost identical to the ISO theoretical bending strength. Finally, the FE model was validated and the reliability of the modeled bending strength was evaluated through the strain measurement experiment.

Effect of Tensile Strain on $I_c$ Degradation Characteristics In Bent Externally Reinforced Bi-2223 Superconducting Tapes (굽힘상태의 외부보강한 Bi-2223 초전도테이프에서 임계전류 열화특성에 미치는 인장변형률의 영향)

  • 신형섭;김기현;오상수;하동우
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.1
    • /
    • pp.6-11
    • /
    • 2004
  • The influences of mixed strain mode of bending-tension on the critical current. Ic in externally reinforced Bi-2223 tapes and their interaction were investigated in this study. A test fixture which providing a mixed deformation mode of bending-tension to HTS tapes has been newly devised. When the total strain induced in the tape in the mixed strain mode was expressed by the superposition of the bending and tensile strains the irreversible strain for the critical current degradation of Bi-2223 tapes increased, as compared with the simple bending mode case. The $I_c$ degradation at the region exceeding the irreversible strain showed a medium between the simple bending case and the simple tension case. As the initial bending strain imparted increased , namely as the diameter of mandrel adopted decreased. the apparent irreversible strain in Bi-2223 tapes increased . but the increment became smaller As a result. it can be found that the tension to be applied to bent Bi-2223 tapes during cabling should be smaller. as the mandrel diameter becomes smaller.

Strain characteristics of Ag sheathed Bi-2223 superconducting tapes according to bending mode (굽힘모드에 따른 Ag 시스 Bi-2223 초전도장척 테이프의 굽힘 변형률 특성)

  • Shin, H.S.;Choi, S.Y.;Ko, D.K.;Ha, H.S.;Ha, D.W.;Oh, S.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.50-54
    • /
    • 2002
  • Influences of bending strain on the critical current ($I_c$) in Ag-sheathed Bi-2223 superconducting tapes at 77K were investigated. The effect of bending mode on the bending strain characteristics was discussed in viewpoints of sample geometry, n-value and damage morphology. Especially, in this paper, we reported the $I_c$ behavior in Ag alloy sheathed Bi-2223 multifilamentary superconducting tapes under hard bending. As a result, $I_c$ degradation behavior of the hard bending appeared remarkably than the case of easy bending, but it did not influence greatly on the n-value.

  • PDF

Characteristic responses of critical current in REBCO coated conductor tapes under tensile/compressive bending strains at 77 K

  • Diaz, Mark Angelo;Shin, Hyung Seop;Lee, Jae-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.31-35
    • /
    • 2018
  • When REBCO coated conductors (CCs) are applied to superconducting devices such as coils and magnets, they are subjected to deformation in various modes such as compression/tension bending, uniaxial/transverse tension and torsion. Despite outstanding performances by REBCO CC tapes, their electromechanical properties have been evaluated primarily under uniaxial tension, therefore data about the critical current ($I_c$) response in the compressive strain region are lacking. In this study, the characteristic responses of $I_c$ in REBCO CC tapes under bending strains in the range from tensile to compressive were evaluated. The springboard bending beam was used, wherein the CC tape sample was soldered onto the surface of the springboard. A Goldacker-type bending test rig, which lacks a support holding the sample during testing, was used as a comparator. Degradation in $I_c$ behaviors, including strain sensitivity, in differently processed REBCO CC tapes were examined based on the test rig used.

Effect of tensile strain on $I_{c}$ degradation characteristics in Bi-2223 superconducting tapes under bending (Bi-2223 초전도테이프 임계전류의 굽힘하에서 인장변형률 특성)

  • 신형섭;오상수;하동우
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.134-138
    • /
    • 2003
  • The influences of mixed mode of bending-tension on the Ic degradation and their interaction on the strain effect were evaluated in this study. A test fixture which applies a mixed deformation mode of bending-tension to HTS tapes has been newly devised. When the strain induced in the tape due to the mixed deformation mode was expressed as a total tensile strain, the irreversible strain to the critical current degradation of Bi-2223 tapes increased when compared with the case of simple bending mode, and the value at both ends were larger than that at the central region of the bend part. The Ic degradation behavior at the region exceeding the irreversible strain showed quiet a rapid drop of the Ic when compared with the simple bending cases. As the applied bending strain increased namely as the diameter of mandrel adopted decreased, the apparent irreversible strain of Bi-2223 tapes increased However, the increment decreased as the mandrel diameter decreased. As a result, it could be found that the tension to be applied to the Bi-2223 tapes during cabling of HTS tapes should be smaller, as the mandrel diameter becomes smaller.

  • PDF

Bending Strain Dependence of the Critical Current in Externally-reinforced Bi-2223 Tapes with Different Hermeticity under pressurized Liquid Nitrogen (외부보강된 밀봉 상태가 다른 Bi-2223테이프의 가압 LN2하에서 임계전류의 굽힘변형률 의존성)

  • Shin, Hyung-Seop;Dizon, John Ryan C;Park, Jeong-Soo;Rolley, Bonifacio
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.541-545
    • /
    • 2007
  • The critical current degradation behaviors of multifilamentary Bi-2223 superconducting tapes under pressurized liquid nitrogen were investigated using a r-shaped sample holder which gives a series of bending strains to tape. Three kinds of externally-reinforced Bi-2223 tapes with different hermeticity were used as samples. The tape with the thicker reinforcement layer had a better bending strain tolerance of $I_c$, but when the bending strain was calculated at the outermost filament, the $I_c$ degradation behavior became identical. For all samples, $I_{c0}$ decreased with the increase of applied pressure, but the $I_c$ degradation behavior with bending strain at each pressure level was similar. Furthermore, after depressurization from 1 MPa to atmospheric pressure, $I_c$ was completely recovered to its initial values. When the samples were warmed up to room temperature after pressurization tests, the ballooning damage occurred at lower bending strain regions. The region where ballooning was observed was identical to the one where the significant $I_c$ degradation occurred.

A Study on the Springback of High-Strength TRIP Steel (고강도 TRIP 강의 스프링백에 대한 연구)

  • 김용환;김태우;이영선;이정환
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.409-414
    • /
    • 2004
  • TRIP steel has got attention in automobile industry because of its high strength and high formability. However, the information on deformation behavior of TRIP steel, including bending and springback, is not enough until now. In this research, the V-die bending experiment and analysis have been done to obtain the information of springback of TRIP steel. And a new numerical method, where elastic modulus is varied with the change of the strain, was suggested. Tensile test for TRIP steel was done to get tensile properties as well as strain dependency of elastic modulus of the material. Strain-dependency of elastic modulus was used the numerical analysis of V-die bending and unbending process to predict springback amount. The results were compared with experiment, showing reasonable agreement. Through the analysis of V-die bending as well as draw bending of TRIP steel, the proposed scheme with variable elastic modulus was proven to well predict the deformation behavior of TRIP steel during bending and springback.

Nanoscale Longitudinal Normal Strain Behavior of ${Si_3}{N_4}$-to-ANSI 304L Brazed Joints under Pure Bending Condition

  • Seo, D.W.;Lim, J.K.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • To combine the mechanical advantages of ceramics with those of metals, one often uses both materials within one composite component. But, as known, they have different material properties and fracture behaviors. In this study, a four-point bending test is carried out on $Si_3N_4$ joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu interlayer at room temperature to evaluate their longitudinal strain behaviors. And, to detect localized strain, a couple of strain gages are pasted near the joint interfaces of the ceramic and metal sides. The normal strain rates are varied from $3.33{\times}10^5$ to $3.33{\times}10^{-1}s^{-1}$ Within this range, the experimental results showed that the four-point bending strength and the deflection of the interlayer increased with increasing the strain rate.

  • PDF