• Title/Summary/Keyword: boundary stress

Search Result 1,659, Processing Time 0.031 seconds

Boundary Element Analysis of Thermal Stress Intensity Factor for Interface Crack under Vertical Uniform Heat Flow (경계요소법을 이용한 수직열유동을 받는 접합경계면 커스프균열의 열응력세기계수 결정)

  • Lee, Kang-Yong;Baik, Woon-Cheon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1794-1804
    • /
    • 1993
  • The thermal stress intensity factors for interface cracks of Griffith and symmetric lip cusp types under vertical uniform heat flow in a finite body are calculated by boundary element method. The boundary conditions on the crack surfaces are insulated or fixed to constant temperature. The relationship between the stress intensity factors and the displacements on the nodal point of a crack tip element is derived. The numerical values of the thermal stress intensity factors for interface Griffith crack in an infinite body and for symmetric lip cusp crack in a finite and homogeneous body are compared with the previous solutions. The thermal stress intensity factors for symmetric lip cusp interface crack in a finite body are calculated with respect to various effective crack lengths, configuration parameters, material property ratios and the thermal boundary conditions on the crack surfaces. Under the same outer boundary conditions, there are no appreciable differences in the distribution of thermal stress intensity factors with respect to each material properties. But the effect of crack surface thermal boundary conditions on the thermal stress intensity factors is considerable.

Boundary stress resolution and its application to adaptive finite element analysis

  • Deng, Jianhui;Zheng, Hong;Ge, Xiurun
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.115-124
    • /
    • 1998
  • A novel boundary stress resolution method is suggested in this paper, which is based upon the displacements of finite element analysis and of high precision with stress boundary condition strictly satisfied. The method is used to modify the Zienkiewicz-Zhu ($Z^2$) a posteriori error estimator and for the h-version adaptive finite element analysis of crack problems. Successful results are obtained.

Effect of serrated grain boundary on stress corrosion cracking of Alloy 600

  • Kim, H.P.;Choi, M.J.;Kim, S.W.;Kim, D.J.;Lim, Y.S.;Hwang, S.S.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1131-1137
    • /
    • 2018
  • The effect of a serrated grain boundary on stress corrosion cracking (SCC) of Alloy 600 was investigated in terms of improvement of SCC resistance. Serrated grain boundaries and straight grain boundaries were obtained by controlled heat treatment. SCC cracks preferentially initiated and grew at grain boundaries normal to the tensile loading axis. Resolved tensile stress normal to the grain boundary was lower in serrated grain boundaries compared to straight grain boundaries. The specimen with serrated grain boundaries showed higher SCC resistance than that with straight grain boundaries due to a lower resolved tensile stress normal to the grain boundary.

Prediction of Crack Propagation Path Using Boundary Element Method in IC Packages (반도체 패키지의 경계요소법에 의한 균열진전경로의 예측)

  • Chung, Nam-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.15-22
    • /
    • 2008
  • Applications of bonded dissimilar materials such as integrated circuit(IC) packages, ceramics/metal and resin/metal bonded joints, are very increasing in various industry fields. It is very important to analyze the thermal stress and stress singularity at interface edge in bonded joints of dissimilar materials. In order to investigate the IC package crack propagating from the edge of die pad and resin, the fracture parameters of bonded dissimilar materials and material properties are obtained. In this paper, the thermal stress and its singularity index for the IC package were analyzed using 2-dimensional elastic boundary element method(BEM). From these results, crack propagation direction and path by thermal stress in the IC package were numerically simulated with boundary element method.

Verification of Stress Analysis on the Bracket of Bus Bear Chassis

  • Kim, Gyu Sung
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.266-272
    • /
    • 2022
  • Structural stress analysis is performed to confirm the safety of the structures before the construction, and stress analysis is performed to evaluate the safety of various components before the ship or vehicle corresponding to the moving structure is manufactured. In this case, the stress analysis work is performed using the stress analysis software of each company. The results of the stress analysis based on the boundary conditions of the applied loads are analyzed to evaluate the safety of the structure, but the results are difficult to verify because most of the stress analysis software possessed by each company is one. In this paper, we were performed the stress analysis of the bracket applied to the bare chassis of the 30-passenger bus under development is performed by HYPERMESH. In order to verify this, the stress analysis is performed using ANSA/META under the same boundary condition. The stress analysis results of ANSA/META and HYPERMESH showed that they had the same stress distribution and the maximum stress occurred at the same location. Taken together, the results of stress analysis using HYPERMESH were reliable.

A Study on the Structural Impact of Job Stress on the Organizational Commitment and Customer Oriented Boundary Spanning Behavior of Hospital Employees (병원종사자의 직무스트레스가 조직몰입과 고객지향영역초월행동에 미치는 구조적 영향관계 분석)

  • Park, Hye-Young
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.603-611
    • /
    • 2013
  • This study examines the impact of job stress on customer-oriented boundary-spanning behavior with the mediating effects of organizational commitment. The survey data was collected from 147 employees working at a hospital and analyzed statistically by using SPSS 18.0 and AMOS 18.0. The result of this study are as follows. Hypothesis 1, Job stress has a negative influence on organizational commitment. Hypothesis 2, Organizational commitment has a positive influence on customer-oriented boundary-spanning behavior. Hypothesis 3, Job stress has a negatively significant impact on customer-oriented boundary-spanning behavior. Accordingly, Organizational commitment has the role of partially mediating the effect between job stress and customer-oriented boundary-spanning behavior. This means that employees working at the point of meeting customers must reduce their job stress in order to improve the service quality of a hospital and creating solutions to reduce job stress of hospital employees can increase customer-oriented boundary-spanning behavior.

A FINITE ELEMENT METHOD USING SIF FOR CORNER SINGULARITIES WITH AN NEUMANN BOUNDARY CONDITION

  • Kim, Seokchan;Woo, Gyungsoo
    • East Asian mathematical journal
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • In [8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogeneous Dirichlet boundary condition, compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then they pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution they could get accurate solution just by adding the singular part. This approach works for the case when we have the reasonably accurate stress intensity factor. In this paper we consider Poisson equations defined on a domain with a concave corner with Neumann boundary conditions. First we compute the stress intensity factor using the extraction formular, then find the regular part of the solution and the solution.

Space-Time Characteristics of the Wall Shear-Stress Fluctuations in a Low-Reynolds Number Axial Turbulent Boundary Layer (축방향 난류경계층에서 벽면마찰 섭동량의 공간 및 시간에 따른 특성)

  • 신동신
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.895-901
    • /
    • 2003
  • Direct numerical simulation database of an axial turbulent boundary layer is used to compute frequency and wave number spectra of the wall shear-stress fluctuations in a low-Reynolds number axial turbulent boundary layer. One-dimensional and two-dimensional power spectra of flow variables are calculated and compared. At low wave numbers and frequencies, the power of streamwise shear stress is larger than that of spanwise shear stress, while the powers of both stresses are almost the same at high wave numbers and frequencies. The frequency/streamwise wave number spectra of the wall flow variables show that large-scale fluctuations to the ms value is largest for the streamwise shear stress, while that of small-scale fluctuations to the rms value is largest for pressure. In the two-point auto-correlations, negative correlation occurs in streamwise separations for pressure and spanwise shear stress, and in spanwise correlation for both shear stresses.

Stress Analysis of Rotary Turbine Engine Disc in High Temperature (고온에서 회전하는 터빈엔진 디스크의 응력해석)

  • 황수철
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.33-41
    • /
    • 1995
  • This study includes thermal plasticity analyses for a turbine rotor with the simple geometry and the boundary conditions. When centrifugal or thermal stress are applied at the high temperature material of engine blade, stress distributions I material ($\sigma$${\gamma}$${\gamma}$, $\sigma$$\theta$$\theta$, $\tau$${\gamma}$$\theta$, Mises stress) are analyzed by computer simulation(ABQUS) as followings; 1. The maximum stress at the radial direction() is applied at the upper middle part of spline hole. 2. The maximum stress at the tangential direction() is applied at the upper right boundary of spline hole. 3. The maximum shear stress () in () direction is applied at the upper middle part of spline hole. 4. The maximum Mises stress is applied at the upper right boundary of spline hole. This stress is due to the critical stress by which rotor can be fractured according to elapsed time.

  • PDF

Analyses of Stress Singularities on Bonded Interfaces in the IC Package by Using Boundary Element method (경계요소법을 이용한 반도체 패키지의 응력특이성 해석)

  • Park, Cheol-Hee;Chung, Nam-Yong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.94-102
    • /
    • 2007
  • Applications of bonded dissimilar materials such as large scale integration (LSI) packages, ceramics/metal and resin/metal bonded joints, are very increasing in various industry fields. It is very important to analyze the thermal stress and stress singularity at interface edge in LSI. In order to investigate stress singularities on the bonded interface edges and delamination of die pad and resin in the IC package. In this paper, stress singularity factors(${\Gamma}_i$) and stress intensity factors($K_i$) considering thermal stress in the IC package were analyzed by using the 2-dimensional elastic boundary element method(BEM).