• 제목/요약/키워드: bucking rate

검색결과 4건 처리시간 0.017초

Computing the Bucking Rate of Japanese Larch Logs for Timber Harvesting

  • Daesung Lee;Yonghee Lee;Ilsub Lee;Jungkee Choi
    • Journal of Forest and Environmental Science
    • /
    • 제40권1호
    • /
    • pp.35-42
    • /
    • 2024
  • The Japanese larch (Larix kaempferi [Lamb.] Carriere) is a major timber species in Korea. However, studies on bucking rates and merchantable logs of this species are insufficient in South Korea. To bridge these gaps, in this study, the bucking rate of Japanese larch (Larix kaempferi [Lamb.] Carriere) was computed and the number of long logs and merchantable log volumes were analyzed. Sample trees were bucked according to the log grade for trading, and collected from a forest field in Gangwon Province. The bucking rate of all Japanese larch logs was >89%. The highly profitable 2-4 logs of 3.6 m length from trees with ≤30 cm diameter at breast height (DBH) and 5-6 logs with ≥34 cm DBH were produced. The bucking rate of long logs was >84%; thus, Japanese larch was found to be suitable for the supply of high-grade timber. Additionally, to follow reasonable wood supply plans, merchantable volume tables were offered based on 3.6 m-long number of logs and small-end diameter classes. Understanding the proportion of merchantable log volumes, bucking rates, and the number of long and short logs has large-scale applications in practical forestry.

심박수를 이용한 임목수확작업의 작업강도 분석 (Heart Rate Strain of Forest-workers in Timber Harvesting Operation)

  • 백승안;이은재;남기훈;조구현
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.593-601
    • /
    • 2020
  • This study was conducted to analyze the physical strain with heart rate monitor in timber harvesting operations in order to reduce occupational accidents. The timber harvesting activities are manual cutting(felling, limbing and bucking) with a chainsaw and extraction by cable yarder. The study took place on Japanese larch stand. The average height was 26m and average diameter at breast height(DBH) was 3 7cm. The havest unit was gentle slope to steep slope. Results showed that the heart rate increases for chocking, felling, limbing and bucking were 94.0%, 87.9%, 84.8% and 56.4% respectively. The rate of Work Load Index was higher in the limbing(61.4%) activity than other activities chocking(55.2%), felling(54.1%) and bucking(32.1%). During 50% working heart rate test it was found that limbing(1.09), chocking(1.05) and felling(1.04) was exposed to high work intensity compared to bucking(0.83). The results showed that maximum acceptable work times(felling, chocking and limbing) were 2.30 hour, 1.85 hour and 1.60 hour respectively. To avoid occupational accidents, timber harvest workers may use a suitable working hour schedule to felling, chocking, limbing.

변형률 속도를 고려한 원형 튜브의 동적 좌굴 현상의 상계 해석에 관한 연구 (Upper Bound Analysis of Dynamic Buckling Phenomenon of Circular Tubes Considering Strain Rate Effect)

  • 박충희;고윤기;허훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.711-716
    • /
    • 2008
  • A circular tube undergoes bucking behavior when it is subjected to axial loading. An upper bound analysis can be an attractive approach to predict the buckling load and energy absorption efficiently. The upper bound analysis obtains the load or energy absorption by means of assumption of the kinematically admissible velocity fields. In order to obtain an accurate solution, kinematically admissible velocity fields should be defined by considering many factors such as geometrical parameters, dynamic effect, etc. In this study, experiments and finite element analyses are carried out for circular tubes with various dimensions and loading conditions. As a result, the kinematically admissible velocity field is newly proposed in order to consider various dimensions and the strain rate effect of material. The upper bound analysis with the suggested velocity field accurately estimates the mean load and energy absorption obtained from results of experiment and finite element analysis.

  • PDF

Optimal flammability and thermal buckling resistance of eco-friendly abaca fiber/ polypropylene/egg shell powder/halloysite nanotubes composites

  • Saeed Kamarian;Reza Barbaz-Isfahani;Thanh Mai Nguyen Tran;Jung-Il Song
    • Advances in nano research
    • /
    • 제16권2호
    • /
    • pp.127-140
    • /
    • 2024
  • Upon direct/indirect exposure to flame or heat, composite structures may burn or thermally buckle. This issue becomes more important in the natural fiber-based composite structures with higher flammability and lower mechanical properties. The main goal of the present study was to obtain an optimal eco-friendly composite system with low flammability and high thermal buckling resistance. The studied composite consisted of polypropylene (PP) and short abaca fiber (AF) with eggshell powder (ESP) and halloysite clay nanotubes (HNTs) additives. An optimal base composite, consisting of 30 wt.% AF and 70 wt.% PP, abbreviated as OAP, was initially introduced based on burning rate (BR) and the Young's modulus determined by horizontal burning test (HBT) and tensile test, respectively. The effects of adding ESP to the base composite were then investigated with the same experimental tests. The results indicated that though the BR significantly decreased with the increase of ESP content up to 6 wt.%, it had a very destructive influence on the stiffness of the composite. To compensate for the damaging effect of ESP, small amount of HNT was used. The performance of OAP composite with 6 wt.% ESP and 3 wt.% HNT (OAPEH) was explored by conducting HBT, cone calorimeter test (CCT) and tensile test. The experimental results indicated a 9~23 % reduction in almost all flammability parameters such as heat release rate (HRR), total heat released (THR), maximum average rate of heat emission (MARHE), total smoke released (TSR), total smoke production (TSP), and mass loss (ML) during combustion. Furthermore, the combination of 6 wt.% ESP and 3 wt.% HNT reduced the stiffness of OAP to an insignificant amount by maximum 3%. Moreover, the char residue analysis revealed the distinct differences in the formation of char between AF/PP and AF/PP/ESP/HNT composites. Afterward, dilatometry test was carried out to examine the coefficient of thermal expansion (CTE) of OAP and OAPEH samples. The obtained results showed that the CTE of OAPEH composite was about 18% less than that of OAP. Finally, a theoretical model was used based on first-order shear deformation theory (FSDT) to predict the critical bucking temperatures of the OAP and OAPEH composite plates. It was shown that in the absence of mechanical load, the critical buckling temperatures of OAPEH composite plates were higher than those of OAP composites, such that the difference between the buckling temperatures increased with the increase of thickness. On the contrary, the positive effect of CTE reduction on the buckling temperature decreased by raising the axial compressive mechanical load on the composite plates which can be assigned to the reduction of stiffness after the incorporation of ESP. The results of present study generally stated that a suitable combination of AF, PP, ESP, and HNT can result in a relatively optimal and environmentally friendly composite with proper flame and thermal buckling resistance with no significant decline in the stiffness.