• Title/Summary/Keyword: cDNA chip

Search Result 123, Processing Time 0.028 seconds

DNA Chip using Single Stranded Large Circular DNA: Low Background and Stronger Signal Intensity

  • Park, Jong-Gu
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.75-84
    • /
    • 2004
  • Massive identification of differentially expressed patterns has been used as a tool to detect genes that are involved in disease related process. We employed circular single stranded sense molecules as probe DNA for a DNA chip. The circular single stranded DNAs derived from 1,152 unigene cDNA clones were purified in a high throughput mode from the culture supernatant of bacterial transformants containing recombinant phagemids and arrayed onto silanized slide glasses. The DNA chip was examined for its utility in detection of differential expression profile by using cDNA hybridization. Hybridization of the single stranded probe DNA were performed with Cy3- or Cy5-labeled target cDNA preparations at $60^\circ$C. Dot scanning performed with the hybridized slide showed 29 up-regulated and 6 down-regulated genes in a cancerous liver tissue when compared to those of adjacent noncancerous liver tissue. These results indicate that the circular single stranded sense molecules can be employed as probe DNA of arrays in order to obtain a precious panel of differentially expressed genes.

  • PDF

Indicator-free DNA Chip Array Using an Electrochemical System

  • Park, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.133-136
    • /
    • 2004
  • This research aims to develop a DNA chip array without an indicator. We fabricated a microelectrode array through photolithography technology. Several DNA probes were immobilized on an electrode. Then, target DNA was hybridized and measured electrochemically. Cyclic-voltammograms (CVs) showed a difference between the DNA probe and mismatched DNA in an anodic peak. This indicator-free DNA chip resulted in a sequence-specific detection of the target DNA.

Development of Pattern Classifying System for cDNA-Chip Image Data Analysis

  • Kim, Dae-Wook;Park, Chang-Hyun;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.838-841
    • /
    • 2005
  • DNA Chip is able to show DNA-Data that includes diseases of sample to User by using complementary characters of DNA. So this paper studied Neural Network algorithm for Image data processing of DNA-chip. DNA chip outputs image data of colors and intensities of lights when some sample DNA is putted on DNA-chip, and we can classify pattern of these image data on user pc environment through artificial neural network and some of image processing algorithms. Ultimate aim is developing of pattern classifying algorithm, simulating this algorithm and so getting information of one's diseases through applying this algorithm. Namely, this paper study artificial neural network algorithm for classifying pattern of image data that is obtained from DNA-chip. And, by using histogram, gradient edge, ANN and learning algorithm, we can analyze and classifying pattern of this DNA-chip image data. so we are able to monitor, and simulating this algorithm.

  • PDF

Development of New DNA Chip and Genome Detection Using an Indicator-free Target DNA (비수식화 DNA를 이용한 유전자 검출 및 새로운 DNA칩의 개발)

  • Park, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo;Tomoji Kawai
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.365-370
    • /
    • 2003
  • This research aims to develop an indicator-free DNA chip using micro-fabrication technology. At first, we fabricated a DNA microarray by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then indicator-free target DNA was hybridized by an electrical force and measured electrochemically in potassium ferricyanide solution. Redox peak of cyclic-voltammogram showed a difference between target DNA and mismatched DNA in an anodic peak current. Therefore, it is able to detect various genes electrochemically after immobilization of various probe DNAs and hybridization of indicator-free DNA on the electrodes simultaneously It suggested that this DNA chip could recognize the sequence specific genes.

Highly Integrated DNA Chip Microarrays by Hydrophobic Interaction

  • Park, Yong-Sung;Kim, Do-Kyin;Kwon, Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.2
    • /
    • pp.23-27
    • /
    • 2001
  • Microarray-based DNA chips provide an architecture for multi-analyte sensing. In this paper, we report a new approach for DNA chip microarray fabrication. Multifunctional DNA chip microarrays were made by immobilizing many kinds if DNAs on transducers (particles). DNA chip microarrays were prepared by randomly distributing a mixture of the particles on a chip pattern containing thousands of micro meter-scale sites. The particles occupied different sites from array to array. Each particle cam be distinguished by a tag that is established on the particle. The particles were arranged on the chip pattern by the random fluidic self-assembly (RFSA) method, using hydrophobic interaction.

Development of High-Intergrated DNA Array on a Microchip by Fluidic Self-assembly of Particles (담체자기조직화법에 의한 고집적 DNA 어레이형 마이크로칩의 개발)

  • Kim, Do-Gyun;Choe, Yong-Seong;Gwon, Yeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.7
    • /
    • pp.328-334
    • /
    • 2002
  • The DNA chips are devices associating the specific recognition properties of two DNA single strands through hybridization process with the performances of the microtechnology. In the literature, the "Gene chip" or "DNA chip" terminology is employed in a wide way and includes macroarrays and microarrays. Standard definitions are not yet clearly exposed. Generally, the difference between macro and microarray concerns the number of active areas and their size, Macroarrays correspond to devices containing some tens spots of 500$\mu$m or larger in diameter. microarrays concern devices containing thousnads spots of size less than 500$\mu$m. The key technical parameters for evaluating microarray-manufacturing technologies include microarray density and design, biochemical composition and versatility, repreducibility, throughput, quality, cost and ease of prototyping. Here we report, a new method in which minute particles are arranged in a random fashion on a chip pattern using random fluidic self-assembly (RFSA) method by hydrophobic interaction. We intend to improve the stability of the particles at the time of arrangement by establishing a wall on the chip pattern, besides distinction of an individual particle is enabled by giving a tag structure. This study demonstrates the fabrication of a chip pattern, immobilization of DNA to the particles and arrangement of the minute particle groups on the chip pattern by hydrophobic interaction.ophobic interaction.

Identification of Radiation-Sensitive Gene in U937 Cell by using cDNA-Chip Composed of Human Cancer Related Gene (U937 세포에서 발암관련 유전자들로 구성된 DNA chip을 이용한 방사선 감수성 유전자들의 선발)

  • 김종수;김인규;강경선;윤병수
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.1
    • /
    • pp.54-59
    • /
    • 2002
  • We have used cDNA microarray hybridization to identify gene regulated in response to gamma-irradiation in U-937 cell. The cDNA-chip was composed entirely of 1,000 human cancer related gene including apoptosis and angiogenesis etc. In gamma-irradiated U-937 cell, highly charged protein, ribosomal protein L32, four and a half LIM domains 3, lipocalin 2 (oncogene 24p3) and interleukin 15, ataxia telangiectasia mutated (includes complementation groups A, C and D) genes showed increased level of its transcription, and cell division cycle 25A, dihydrofolate reductase, topoisomerase (DNA) II beta(180kD), kinase suppressor of ras and strarigin genes showed reduced level of its transcription compared to untreated U-937 cell. The significant change of level of transcription was not found in well-known ionizing radiation(IR)-responsive gene, such as transcription factor TP53 and p53 related gene, except ataxia telangiectasia mutated gene.

  • PDF

Program Development of Integrated Expression Profile Analysis System for DNA Chip Data Analysis (DNA칩 데이터 분석을 위한 유전자발연 통합분석 프로그램의 개발)

  • 양영렬;허철구
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.381-388
    • /
    • 2001
  • A program for integrated gene expression profile analysis such as hierarchical clustering, K-means, fuzzy c-means, self-organizing map(SOM), principal component analysis(PCA), and singular value decomposition(SVD) was made for DNA chip data anlysis by using Matlab. It also contained the normalization method of gene expression input data. The integrated data anlysis program could be effectively used in DNA chip data analysis and help researchers to get more comprehensive analysis view on gene expression data of their own.

  • PDF

The Antioxidant Effect, Inhibition of Interleukin-4 and the Effect on the Gene Expression by Using cDNA Chip of Chungsangboha-tang(Qingshangbuxia-tang) (청상보하탕의 항산화 효과, Interleukin-4 억제 및 cDNA chip을 이용한 유전자발현에 미치는 영향)

  • 이동생;정희재;정승기;이형구
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.148-158
    • /
    • 2003
  • Backgrounds & Objectives: In many recent studies, molecular biological methods have been used to investigate the role of cytokines in pathogenesis and new therapeutic targets of asthma. Recently, as a method of research on the gene expression, they are applying another method which assays multiple gene expressions at the same time by the microarray. In this study, the antioxidant effect, the inhibitory effect against interleukin-4 and the effect on the CD/cytokine gene expression in PBMC (peripheral blood mononuclear cells) was evaluated by using cDNA microarray chip of Chungsangboha-tang. Methods: Experimental studies were performed for the antioxidant effect of Chungsangboha-tang on DPPH (1, 1-diphenyl-2-picrylhydrazyl) solution, for the IL-4-inhibiting effect on BALB/c mouse spleen, and for the gene expression effect on PBMC (peripheral blood mononuclear cells) with microarray. Results: Chungsangboha-tang showed antioxidant effect dose-dependently. Chungsangboha-tang inhibited interleukin-4 dose-dependently and showed significant difference in 10ug/ml and 100ug/ml of test groups. There was no 2 more times upregulated genes than in the control group by using cDNA microarray chip of Chungsangbohn-tang, but there were 140%-200% upregulated genes. There was no 2 more times downregulated genes than in the control group by using cDNA microarray chip of Chungsangboha-Tang, but there was 50%-75% downregulated genes. Conclusions: This study showed that Chungsangboha-tang has an antioxidant effect and inhibition of Interleukin-4, but further studies are necessary with microarray.

  • PDF

Electrochemical Detection of Single Nucleotide Polymorphism (SNP) Using Microelectrode Array on a DNA Chip (미소전극어레이형 DNA칩을 이용한 유전자다형의 전기화학적 검출)

  • 최용성;권영수;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.286-292
    • /
    • 2004
  • In this study, an integrated microelectrode array was fabricated on glass slide using microfabrication technology. Probe DNAs consisting of mercaptohexyl moiety at their 5-end were spotted on the gold electrode using micropipette or DNA arrayer utilizing the affinity between gold and sulfur. Cyclic voltammetry in 5mM ferricyanide/ferrocyanide solution at 100 ㎷/s confirmed the immobilization of probe DNA on the gold electrodes. When several DNAs were detected electrochemically, there was a difference between target DNA and control DNA in the anodic peak current values. It was derived from specific binding of Hoechst 33258 to the double stranded DNA due to hybridization of target DNA. It suggested that this DNA chip could recognize the sequence specific genes. It suggested that multichannel electrochemical DNA microarray is useful to develop a portable device for clinical gene diagnostic System.