• Title/Summary/Keyword: carrier phase distortion

Search Result 42, Processing Time 0.031 seconds

Automatic carrier phase delay synchronization of PGC demodulation algorithm in fiber-optic interferometric sensors

  • Hou, Changbo;Guo, Shuai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2891-2903
    • /
    • 2020
  • Phase-generated carrier (PGC) demodulation algorithm is the main demodulation methods in Fiber-optic interferometric sensors (FOISs). The conventional PGC demodulation algorithms are influenced by the carrier phase delay between the interference signal and the carrier signal. In this paper, an automatic carrier phase delay synchronization (CPDS) algorithm based on orthogonal phase-locked technique is proposed. The proposed algorithm can calculate the carrier phase delay value. Then the carrier phase delay can be compensated by adjusting the initial phase of the fundamental carrier and the second-harmonic carrier. The simulation results demonstrate the influence of the carrier phase delay on the demodulation performance. PGC-Arctan demodulation system based on CPDS algorithm is implemented on SoC. The experimental results show that the proposed algorithm is able to obtain and eliminate the carrier phase delay. In comparison to the conventional demodulation algorithm, the signal-to-noise and distortion ratio (SINAD) of the proposed algorithm increases 55.99dB.

Analysis of Amplitude Distortion in Super Wide-Band AM Signal Transmission (초광대역 AM 신호전송에서의 진폭왜율해석)

  • 이충웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.8 no.3
    • /
    • pp.27-32
    • /
    • 1971
  • This paper presents the analysis of the amplitude distortion occurring in the transmission of super wideband AM signal when the amplitude and phase variations of the upper and lower sidebands of the AM signal are symmetrical, and odd symmetrical with respect to the carrier. It is shown that the case where the amplitude variations of the upper and lower sidebands of AM signal are symmetrical with respect to the carrier while the phase variations of the upper and lower sidebands are odd symmetrical with respect to the carrier induce, no amplitude distortion in AM signal transmission.

  • PDF

Reduced Current Distortion of Three-Phase Three-Switch Buck-Type Rectifier using Carrier Based PWM in EV Traction Battery Charging Systems (전기 자동차 배터리 충전장치용 3상 3스위치 전류형 정류기의 전류 왜곡 감소를 위한 펄스 폭 변조 스위칭 기법)

  • Chae, Beomseok;Kang, Taewon;Kang, Tahyun;Suh, Yongsug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.375-387
    • /
    • 2015
  • This study investigates an economic and highly efficient power-converter topology and its modulation scheme for 60 kW rapid EV charger system. The target system is a three-phase three-switch buck-type rectifier topology. A new carrier-based PWM scheme, which is characterized by simple implementation using logic gates, is introduced in this paper. This PWM scheme replaces the diode rectifier equivalent switching state with an active switching state to produce the same effective current flowing path. As a result, the distortion of input current during the polarity reversal of capacitor line voltage can be mitigated. The proposed modulation technique is confirmed through simulation verification. The proposed modulation technique and its implementation scheme can expand the operation range of the three-phase three-switch buck-type rectifier with high-quality AC input and capacitor ripple current.

Voltage Source Inverter Drive Using Error-compensated Pulse Width Modulation

  • Chen, Keng-Yuan;Hu, Jwu-Sheng;Lin, Jau-Nan
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.388-397
    • /
    • 2016
  • An error-compensated pulse width modulator (ECPWM) is proposed to improve the baseband harmonic performance and the switching loss of voltage source inverters (VSIs). Selecting between harmonic distortion and switching loss is a design tradeoff in the conventional space vector pulse width modulation. In this work, an accumulated difference in produced and desired phase voltages is considered to adjust the reference signal. This mechanism can compensate for the voltage error in the previous carrier period. With error compensation every half-carrier period, the proposed ECPWM allows one-half reduction in carrier frequency without scarifying baseband harmonic distortion. The proposed modulator is applied to a three-phase VSI with R-L load and a motor-speed-control system for experiments. The measured efficiency and operating temperature of switches confirm the effectiveness of the proposed scheme.

The Simple Harmonic Analysis Method of the Multi-Carrier PWM Techniques by Using the Output Phase Voltage in the Multi-Level Inverter (출력 상전압을 이용한 멀티-캐리어 PWM 기법의 간단한 고조파 분석 방법)

  • 김준성;김태진;강대욱;현동석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.352-360
    • /
    • 2003
  • This paper deals with a simple method in order to analyze and compare the harmonic characteristics in the multi-level inverter. Generally, the magnitude of harmonic components becomes different according to the multi-carrier Pulse Width Modulation(PWM) techniques, the modulation index($M_i$) and the switching frequency The previous papers analyzed the harmonic characteristics from the viewpoint of the space voltage vector. Hence, the calculation of the harmonic vector becomes more difficult and complex in 4-level or over 5-level. However, the proposed method has reduced an amount of calculation and simplified the process of it, using the relationship between the reference voltage and the output phase voltage to the load neutral point. It is applied to the 5-level cascade inverter and the harmonic characteristics for each multi-carrier PWM technique are compared through the simulation.

Synchronous Carrier-based Pulse Width Modulation Switching Method for Vienna Rectifier

  • Park, Jin-Hyuk;Yang, SongHee;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.604-614
    • /
    • 2018
  • This paper proposes a synchronous switching technique for a Vienna rectifier that uses carrier-based pulse width modulation (CB-PWM). A three-phase Vienna rectifier, similar to a three-level T-type converter with three back-to-back switches, is used as a PWM rectifier. Conventional CB-PWM requires six independent gate signals to operate back-to-back switches. When internal switches are operated synchronously, only three independent gate signals are required, which simplifies the construction of gate driver circuits. However, with this method, total harmonic distortion of the input current is higher than that with conventional CB-PWM switching. A reactive current injection technique is proposed to improve current distortion. The performance of the proposed synchronous switching method and the effectiveness of the reactive current injection technique are verified using simulations and experiments performed with a set of Vienna rectifiers rated at 5 kW.

The Measurement of 3-Phase Current with Single Current Sensor and the Compensation of Voltage Distortion in Carrier-Based PWM Technique (삼각파 비교 PWM 기법에 있어서 단일 전류센서에 의한 삼상 전류 측정 및 전압 왜곡 보상)

  • 김경서
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.292-298
    • /
    • 2003
  • Most of the three phase inverters for adjustable speed drive of AC machines are equipped with two or three current sensors for measurement of three phase current. One method to reduce the number of current sensors is that single current sensor measures the DC link current, then three phase current is reconstructed using the measured value and the switching status. To improve the measurement accuracy, switching state should be maintained for more than minimum switching time. Many papers have been published, which focused on the readjustment of pulse width and compensation of voltage distortion. Those methods are suitable for space vector modulation. But there are some difficulties in applying these methods to carrier-based PWM which is widely used in industry. In this paper, new current measurement method and voltage compensation method are proposed which are suitable for carrier-based PWM, then, the validity of proposed method is confirmed through experiment.

PWM Method with Low d-axis Current Ripple for reducing Input Current THD at Light Loads in Three Phase PWM Rectifier (3상 PWM 정류기의 경부하시 입력전류 THD 저감을 위한 d축 전류리플 저감 PWM 방법)

  • Jin, Yong-Sin;Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.478-485
    • /
    • 2012
  • In this paper, a new PWM method is proposed to reduce the input current harmonics of 3 phase PWM rectifier. In the conventional carrier comparison PWM method, a triangular wave is generally used as the carrier wave. However, the large d-axis current ripple by the triangle carrier wave may be a source of large input current THD(Total Harmonic Distortion). In this paper, a new carrier comparison PWM method with saw tooth wave is proposed. Depending on the sector where the voltage command vector places, one of the rising or falling saw tooth wave is selected. To reduce the switching losses of the saw tooth carrier PWM, the discontinuous PWM is also presented. The proposed PWM method can reduce the d-axis current ripple as well as the switching losses. The performance of the conventional and proposed PWM methods is verified by the simulation and experimental results.

Enhanced robust data embedding techniques (내성을 강화한 data embedding기법)

  • 정인식;권오진
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.247-250
    • /
    • 2002
  • Data embedding has recently become important for protecting authority. In this paper, we Propose a robust data embedding technique for images. Our techniques are based on the convolution between message image and a random phase carrier. We add extra bits with carrier image to improve precision of detecting rate, moreover, we use block by block based cyclic correlation for the compensation of distortion. In experiment, we show that the proposed a1gorithm is robust to Stirmark 3.1. attacks.

  • PDF

SNR Enhancement Algorithm Using Multiple Chirp Symbols with Clock Drift for Accurate Ranging

  • Jang, Seong-Hyun;Kim, Yeong-Sam;Yoon, Sang-Hun;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.841-848
    • /
    • 2011
  • A signal-to-noise ratio (SNR) enhancement algorithm using multiple chirp symbols with clock drift is proposed for accurate ranging. Improvement of the ranging performance can be achieved by using the multiple chirp symbols according to Cramer-Rao lower bound; however, distortion caused by clock drift is inevitable practically. The distortion induced by the clock drift is approximated as a linear phase term, caused by carrier frequency offset, sampling time offset, and symbol time offset. SNR of the averaged chirp symbol obtained from the proposed algorithm based on the phase derotation and the symbol averaging is enhanced. Hence, the ranging performance is improved. The mathematical analysis of the SNR enhancement agrees with the simulations.