• Title/Summary/Keyword: celastrol

Search Result 15, Processing Time 0.031 seconds

Protective Effects of Celastrol, the Triterpenoid Component of Celastrus Orbiculatus, on Dopaminergic Neuronal Cells in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned Parkinson's Disease Rats (노박덩굴에 함유된 celastrol 성분의 파킨슨병을 유발시킨 쥐에서의 도파민 신경세포 보호효과)

  • Lee, Kap-Duk;Kim, Kwang-Jin;Park, Yong-Ki
    • The Journal of Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.94-103
    • /
    • 2008
  • Objectives: The aim of this study was to determine whether celastrol, the triterpenoid component of Celastrus orbiculatus, offers neuroprotection against Parkinson's disease (PD) in mice administered 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine(MPTP). Methods: We examined how celastrol affected MPTP-induced neuronal loss of tyrosine hydroxylase (TH)-positive dopaminergic neurons in substantia nigra pars compacta (SNpc) in the midbrain of mice. C57BL/6J mice were divided into four groups: (1) saline-saline, (2) saline-celastrol, (3) MPTP-saline, and (4) MPTP-celastrol. The mice were injected intraperitoneally (i.p.) with four administrations of MPTP (18mg/kg) at 2 h intervals and then i.p. administered celastrol (3mg/kg) two times at 12 h after last celastrol administration. Expression of TH on the SNpc of brain tissues were analyzed at 7 days after the treatments by immunohistochemistry and Western blot. Results: Immunohistochemical analysis using TH antibody showed that celastrol provided significantly protective effects against MPTP-induced loss of TH-positive dopaminergic neurons in the SNpc region of the midbrain of mice. Our Western blot study also showed that celastrol significantly inhibits the MPTP-induced neuronal damage via the up-regulation of TH protein levels in MPTP mice. Conclusions: The present results suggest that it may be possible to use celastrol for the prevention of nigral degenerative disorders including PD, caused by exposure to toxic substances.

  • PDF

Anti-proliferative Effects of Celastrol, A Quinine Methide Triterpene Extracted from the Perennial Vine Tripterygium wilfordii, on Obesity-related Cancers (미역줄나무 뿌리 추출물인 셀라스트롤의 비만관련 암증식 억제효과)

  • Park, Sunmi;Moon, Hyun-Seuk
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.1
    • /
    • pp.59-66
    • /
    • 2016
  • It has been generally accepted that obesity and overweight are associated with metabolic diseases and cancer incidence. In fact, obesity increased risks of cancers i.e. breast, liver, pancreatic and prostate. Celastrol is a pentacyclic triterpenoid isolated from Thunder god vine, was used as a Chinese traditional medicine for treatment of inflammatory disorders such as arthritis, lupus erythematosus and Alzheimer's disease. Also, celastrol has various biological properties of chemo-preventive, neuro-protective, and anti-oxidant effects. Recent studies demonstrated that celastrol has anti-proliferation effects in different type of obesity-related cancers and suppresses tumor progression and metastasis. Anticancer effects of celastrol include regulation of $NF-{\kappa}B$, heat shock protein, JNK, VEGF, CXCR4, Akt/mTOR, MMP-9 and so on. For these reasons, celastrol has shown to be a promising anti-tumor agent. In this review, we will address the anticancer activities and multiple mechanisms of celastrol in obesity-related cancers.

Celastrol inhibits gastric cancer growth by induction of apoptosis and autophagy

  • Lee, Hyun-Woo;Jang, Kenny Seung Bin;Choi, Hye Ji;Jo, Ara;Cheong, Jae-Ho;Chun, Kyung-Hee
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.697-702
    • /
    • 2014
  • Recently, the interest in natural products for the treatment of cancer is increasing because they are the pre-screened candidates. In the present study, we demonstrate the therapeutic effect of celastrol, a triterpene extracted from the root bark of Chinese medicine on gastric cancer. The proliferation of AGS and YCC-2 cells were most sensitively decreased in six kinds of gastric cancer cell lines after the treatment with celastrol. Celastrol inhibited the cell migration and increased G1 arrest in cell-cycle populations in both cell lines. The treatment with celastrol significantly induced autophagy and apoptosis and increased the expression of autophagy and apoptosis-related proteins. We also found an increase in phosphorylated AMPK following a decrease in all phosphorylated forms of AKT, mTOR and S6K after the treatment with celastrol. Moreover, gastric tumor burdens were reduced in a dose-dependent manner by celastrol administration in a xenografted mice model. Taken together, celastrol distinctly inhibits the gastric cancer cell proliferation and induces autophagy and apoptosis.

Comparative Proteome Analysis of Celastrol-Treated Helicobacter pylori

  • Kim, Sa-Hyun
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.395-401
    • /
    • 2017
  • Various preclinical and clinical trials have been conducted the efficacy of celastrol. In data presented in the current manuscript is the first trial to inhibit Helicobacter pylori with celastrol. In this study, the quantitative change of various H. pylori proteins including CagA and VacA by the anti-bacterial effect of celastrol was determined. The anti-H. pylori effects of celastrol was investigated by performing 2-dimensional electrophoresis and additional supporting experiments. After 2-dimensional electrophoresis analysis, spot intensities were analyzed and then each spot was identified using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) or peptide sequencing using Finnigan LCQ ion trap mass spectrometer (LC-MS/MS). The results show that celastrol has multiple effects on protein expression in H. pylori.

Celastrol suppresses expression of adhesion molecules and chemokines by inhibiting JNK-STAT1/NF-κB activation in poly(I:C)-stimulated astrocytes

  • An, Soo Yeon;Youn, Gi Soo;Kim, Hyejin;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.50 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • In the central nervous system, viral infection can induce inflammation by up-regulating pro-inflammatory mediators that contribute to enhanced infiltration of immune cells into the central nervous areas. Celastrol is known to exert various regulatory functions, including anti-microbial activities. In this study, we investigated the regulatory effects and the mechanisms of action of celastrol against astrocytes activated with polyinosinic-polycytidylic acid (poly(I:C)), a synthetic dsRNA, as a model of pro-inflammatory mediated responses. Celastrol significantly inhibited poly(I:C)-induced expression of adhesion molecules, such as ICAM-1/VCAM-1, and chemokines, such as CCL2, CXCL8, and CXCL10, in CRT-MG human astroglioma cells. In addition, celastrol significantly suppressed poly(I:C)-induced activation of JNK MAPK and STAT1 signaling pathways. Furthermore, celastrol significantly suppressed poly(I:C)-induced activation of the $NF-{\kappa}B$ signaling pathway. These results suggest that celastrol may exert its regulatory activity by inhibiting poly(I:C)-induced expression of pro-inflammatory mediators by suppressing activation of JNK MAPK-STAT1/$NF-{\kappa}B$ in astrocytes.

Celastrol ameliorates cytokine toxicity and pro-inflammatory immune responses by suppressing NF-κB activation in RINm5F beta cells

  • Ju, Sung Mi;Youn, Gi Soo;Cho, Yoon Shin;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.172-177
    • /
    • 2015
  • Upregulation of pro-inflammatory mediators contributes to ${\beta}$-cell destruction and enhanced infiltration of immune cells into pancreatic islets during development of type 1 diabetes mellitus. In this study, we examined the regulatory effects and the mechanisms of action of celastrol against cytotoxicity and pro-inflammatory immune responses in the RINm5F rat pancreatic ${\beta}$-cell line stimulated with a combination of interleukin-1 beta, tumor necrosis factor-alpha, and interferon-${\gamma}$. Celastrol significantly restored cytokine-induced cell death and significantly inhibited cytokine-induced nitric oxide production. In addition, the protective effect of celastrol was correlated with a reduction in pro-inflammatory mediators, such as inducible nitric oxide synthase, cyclooxygenase-2, and CC chemokine ligand 2. Furthermore, celastrol significantly suppressed cytokine-induced signaling cascades leading to nuclear factor kappa B (NF-${\kappa}B$) activation, including $I{\kappa}B$-kinase (IKK) activation, $I{\kappa}B$ degradation, p65 phosphorylation, and p65 DNA binding activity. These results suggest that celastrol may exert its cytoprotective activity by suppressing cytokine-induced expression of pro-inflammatory mediators by inhibiting activation of NF-${\kappa}B$ in RINm5F cells.

Study on the Antitumor Activity of Dichloromethane Extract of Tripterygium regelii SPRAGUE (뇌공등(雷公藤) 디클로메탄(CH$_2$Cl$_2$)분획의 항암효능 연구)

  • Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1196-1199
    • /
    • 2006
  • Tripterygium regelii SPRAGUE is distributed in Korea and Northern China. This extract has been used as a herb medicine, especially antiparasitic, anti-inflammatory and detoxifying agent in East asia. During our research to develop new antitumor agents from natural products, Dichlorornethane (CH$_2$Cl$_2$) extract of Tripterygium regelii SPRAGUE (DTR) showed the potent apoptotic effects in A-549 lung cancer, HeLa-3 cervical cancer, SKMEL-2 melanoma cells in a dose-dependent manner. in order to purify major compounds from DTR, column chromatography was carried out gradually. Silica gel and RP-18 column chromatography for active fractions led to the isolation of a compound. The compound determined by 1 H-NMR was turned out to De Celastrol known to have antitumor activity.

Study on the Antitumor Activity of Tripterygium Regelii Sprague (미역줄나무의 항암활성에 관한 연구)

  • Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.441-445
    • /
    • 2005
  • Tripterygium regelii has been used as an oriental medicine, especially antiparasitic, anti-inflammatory and detoxifying agents in East asia. During our research to develop new antitumor agents from natural products, MeOH ext. and CH2Cl2 ext. of Tripterygium regelii showed the potent antitumor activity. In order to purify active compounds from Tripterygium regelii, activity-guided fractionation was carried out. Silica gel and RP-18 column chromatography for the active fraction led to the isolation of two compounds and their antitumor activities were studied. Those two compounds didn't show potent antitumor activity against human tumor cell lines. The structure of two compounds were determined by $^1H-NMR$, $^{13}C-NMR$, DEPT, $^1H-^{13}C$ COSY and IR spectrum. Compound I and Compound II were turned out to be Celastrol, and ${\beta}-sitosteryl-3-o-{\beta}-D-glucopyranoside$ respectively.