• Title/Summary/Keyword: code pseudorange

Search Result 22, Processing Time 0.022 seconds

Compensation Algorithm of DCO Cumulative Error in the GNSS Signal Generator (GNSS 신호생성기에서 DCO 누적오차 보상 알고리즘)

  • Kim, Taehee;Sin, Cheonsig;Kim, Jaehoon
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.119-125
    • /
    • 2014
  • In this paper, we developed the signal generator of GNSS navigation signals and analysis the performance of DCO(Digitally Clock Oscillator) compensation algorithm for cumulative distance error thorough simulation. In general, To generate a GNSS signal calculates the Doppler and Initial Pseudorange by using the location information of the receiver and the satellite. The GNSS signal generator generates a signal by determine the carrier and code output frequency using the Doppler information which is calculated as a function of time. The output frequency of the carrier and code would be used the DCO scheme. At this time, It extract the bit and code information on a for each sample by accumulating the DCO. an error of Pseudorange is generated by the cumulative error of the DCO. If Pseudorange error occurs, so that the influence to and operation of the receiver. Therefore, in this paper, we implemented the accumulated error compensation algorithm of the DCO to remove the accumulated error components DCO thereof, Pseudorange accumulated error is removed through the experiment, it was confirmed to be a high accuracy can be operated.

Accuracy Evaluation of IGS-RTS Corrections to Stand-Alone Positioning Based on GPS Code-Pseudorange Measurements

  • Kang, Min-Wook;Won, Jihye;Kim, Mi-So;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The International GNSS Service (IGS) provides the IGS-Real Time Service (IGS-RTS) corrections that can be used in stand-alone positioning in real time. In this study, the positioning accuracy before and after the application of the corrections to broadcast ephemeris by applying the IGS-RTS corrections at code pseudo-range based stand-alone positioning was compared with positioning result using precise ephemeris. The analysis result on IGS-RTS corrections showed that orbit error and clock error were 0.05 m and 0.5 ns compared to precise ephemeris and accuracy improved by about 8.5% compared to the broadcast ephemeris-applied result when the IGS-RTS was applied to positioning. Furthermore, regionally dispersed five observatories were selected to analyze the effect of external environments on positioning accuracy and positioning errors according to location and time were compared as well as the number of visible satellites and position dilution of precision by observatory were analyzed to verify a correlation with positioning error.

Multipath detection in carrier phase differential GPS

  • Seo, Jae-Won;Lee, Hyung-Keun;Lee, Jang-Gyu;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1239-1243
    • /
    • 2005
  • A multipath mitigation method using the fault detection and isolation technique is proposed for the CDGPS. The base station is assumed to be immune to the effect of the multipath. With this reasonable assumption, the effect of multipath in moving station is mitigated. For that, the double difference measurement is produced, and then another additional difference between code pseudorange and acclumulated carrier phase is calculated. The test statistic is constituted with those differences. The hypothesis testing is applied to that test statistic. The proposed test statistic makes use of the effect of multipath in code pseudoranges and it does not use time differences. Therefore the detection ability for multipath is improved in most environments. However, the increased number of differences makes the measurement noises larger. The performance of the method is compared with that of the conventional parity space method with code pseudorange.

  • PDF

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms Based on GLONASS Code-Pseudorange Measurements

  • Kim, Mi-So;Park, Kwan-Dong;Won, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The purpose of this study is to develop precise point positioning (PPP) algorithms based on GLONASS code-pseudorange, verify their performance and present their utility. As the basic correction models of PPP, we applied Inter Frequency Bias (IFB), relativistic effect, satellite antenna phase center offset, and satellite orbit and satellite clock errors, ionospheric errors, and tropospheric errors that must be provided on a real-time basis. The satellite orbit and satellite clock errors provided by Information-Analytical Centre (IAC) are interpolated at each observation epoch by applying the Lagrange polynomial method and linear interpolation method. We applied Global Ionosphere Maps (GIM) provided by International GNSS Service (IGS) for ionospheric errors, and increased the positioning accuracy by applying the true value calculated with GIPSY for tropospheric errors. As a result of testing the developed GLONASS PPP algorithms for four days, the horizontal error was approximately 1.4 ~ 1.5 m and the vertical error was approximately 2.5 ~ 2.8 m, showing that the accuracy is similar to that of GPS PPP.

Development of the KASS Multipath Assessment Tool

  • Cho, SungLyong;Lee, ByungSeok;Choi, JongYeoun;Nam, GiWook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.267-275
    • /
    • 2018
  • The reference stations in a satellite-based augmentation system (SBAS) collect raw data from global navigation satellite system (GNSS) to generate correction and integrity information. The multipath signals degrade GNSS raw data quality and have adverse effects on the SBAS performance. The currently operating SBASs (WAAS and EGNOS, etc.) survey existing commercial equipment to perform multipath assessment around the antennas. For the multi-path assessment, signal power of GNSS and multipath at the MEDLL receiver of NovAtel were estimated and the results were replicated by a ratio of signal power estimated at NovAtel Multipath Assessment Tool (MAT). However, the same experiment environment used in existing systems cannot be configured in reference stations in Korean augmentation satellite system (KASS) due to the discontinued model of MAT and MEDLL receivers used in the existing systems. This paper proposes a test environment for multipath assessment around the antennas in KASS Multipath Assessment Tool (K-MAT) for multipath assessment. K-MAT estimates a multipath error contained in the code pseudorange using linear combination between the measurements and replicates the results through polar plot and histogram for multipath assessment using the estimated values.

Development and Positioning Accuracy Assessment of Precise Point Positioning Algorithms based on GPS Code-Pseudorange Measurements (GPS 코드의사거리 기반 정밀단독측위(PPP) 알고리즘 개발 및 측위 정확도 평가)

  • Park, Kwan Dong;Kim, Ji Hye;Won, Ji Hye;Kim, Du Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • Precise Point Positioning (PPP) algorithms using GPS code pseudo-range measurements were developed and their accuracy was validated for the purpose of implementing them on a portable device. The group delay, relativistic effect, and satellite-antenna phase center offset models were applied as fundamental corrections for PPP. GPS satellite orbit and clock offsets were taken from the International GNSS Service official products which were interpolated using the best available algorithms. Tropospheric and ionospheric delays were obtained by applying mapping functions to the outputs from scientific GPS data processing software and Global Ionosphere Maps, respectively. When the developed algorithms were tested for four days of data, the horizontal and vertical positioning accuracies were 0.8-1.6 and 1.6-2.2 meters, respectively. This level of performance is comparable to that of Differential GPS, and further improvements and fine-tuning of this suite of PPP algorithms and its implementation at a portable device should be utilized in a variety of surveying and Location-Based Service applications.

Real-time Precision GPS Positioning Algorithm Based on Reconfiguration Kalman Filter (재구성기법을 이용한 칼만필터 기반의 실시간 정밀 GPS 측위기법)

  • Won, Jong-Hoon;Ko, Sun-Jun;Lee, Ja-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2439-2442
    • /
    • 2000
  • This paper presents a practical On-The-Fly(OTF) integer ambiguity resolution algorithm for real-time precise positioning with low cost, $L_1$ single frequency, conventional C/A code GPS receiver. A state reconfiguration scheme is adopted in the Kalman filter to deal with the variation of ambiguity states caused by varying sets of visible GPS satellites. The proposed algorithm reduces the ambiguity search space from the coarse m-level C/A code pseudorange measurements of the conventional C/A code reciever, thereby reducing the computational time. Simulation results are presented to show that the algorithm achieves a cm-level accuracy.

  • PDF

Error Budget Analysis of Pseudorange for Improving the GPS Positioning Accuracy (GPS 위치정확도 향상을 위한 의사거리 오차의 분석에 관한 연구)

  • Kim, Yong-Il;Kim, Dong-Hyun;Kim, Byung-Guk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.79-90
    • /
    • 1996
  • It is well known that point positioning using a C/A-code receiver is severely biased by errors in pseudorange. This paper shows the procedures of quantitive analysis for several error elements and that some methods to monitor SA(selective availability) of witch process is not opened are proposed. It is possible to verify the effects of SA in the Doppler shift and receiver clock drift variation. Easy methods to reduce SA effects are to fit second order polynomials for the one and a linear function for the other. With periodic autocorrelation functions. SA effects are analyzed and first order Gauss-Markov process parameters are decided.

  • PDF

Evaluation of Single-Frequency Precise Point Positioning Performance Based on SPARTN Corrections Provided by the SAPCORDA SAPA Service

  • Kim, Yeong-Guk;Kim, Hye-In;Lee, Hae-Chang;Kim, Miso;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • Fields of high-precision positioning applications are growing fast across the mass market worldwide. Accordingly, the industry is focusing on developing methods of applying State-Space Representation (SSR) corrections on low-cost GNSS receivers. Among SSR correction types, this paper analyzes Safe Position Augmentation for Real Time Navigation (SPARTN) messages being offered by the SAfe and Precise CORrection DAta (SAPCORDA) company and validates positioning algorithms based on them. The first part of this paper introduces the SPARTN format in detail. Then, procedures on how to apply Basic-Precision Atmosphere Correction (BPAC) and High-Precision Atmosphere Correction (HPAC) messages are described. BPAC and HPAC messages are used for correcting satellite clock errors, satellite orbit errors, satellite signal biases and also ionospheric and tropospheric delays. Accuracies of positioning algorithms utilizing SPARTN messages were validated with two types of positioning strategies: Code-PPP using GPS pseudorange measurements and PPP-RTK including carrier phase measurements. In these performance checkups, only single-frequency measurements have been used and integer ambiguities were estimated as float numbers instead of fixed integers. The result shows that, with BPAC and HPAC corrections, the horizontal accuracy is 46% and 63% higher, respectively, compared to that obtained without application of SPARTN corrections. Also, the average horizontal and vertical RMSE values with HPAC are 17 cm and 27 cm, respectively.

Performance Analysis of Multi-GNSS Positioning Accuracy with Code Pseudorange of Dual-Frequency Android Smartphone in Maritime Environment (안드로이드 스마트폰의 이중 주파수 GNSS 의사거리 기반 해상 측위정확도 성능 분석)

  • Seo, Kiyeol;Kim, Youngki;Jeon, Tae-Hyeong;Son, Pyo-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1588-1595
    • /
    • 2021
  • Android-based smartphones receive the global navigation satellite system (GNSS) signals to determine their location and provide the GNSS raw measurement to users. The available GNSS signals on the current Android devices are GPS, GLONASS, Galileo, BeiDou, QZSS. This research has analyzed the performance of multi-GNSS position accuracy based on the pseudorange of the smartphone for maritime users. Smartphones capable of receiving dual-frequency are installed on a ship, and multi-GNSS raw information in maritime environment was measured to present the results of comparing the GNSS pseudorange-based dual-frequency positioning performance for each smarphone. Furthermore, we analyzed whether the results of the positioning performance can meet the HEA requirement of IMO for maritime navigation users. As the results of maritime experiment, it was confirmed that in the case of the smartphones supporting the dual-frequency, the position accuracy within 6 meters (95%) could be obtained, and the HEA position accuracy performance within 10 meters (95%) required by IMO could be achieved.