• 제목/요약/키워드: computational group theory

검색결과 41건 처리시간 0.022초

COMPUTERS IN ALGEBRA: NEW ANSWERS, NEW QUESTIONS

  • Praeger, Cheryl E.
    • 대한수학회지
    • /
    • 제38권4호
    • /
    • pp.763-780
    • /
    • 2001
  • The use and development of of computer technology by algebraists over the last forty years has revolutionised the way in which algebraists think about algebra, and the way they teach it and conduct their research. This paper is a personal reflection on these changes by a somewhat unwilling computer user.

  • PDF

Theoretical Studies on Mechanism and Kinetics of the Hydrogen-Abstraction Reaction of CF3CH2CHO with OH Radicals

  • Ci, Cheng-Gang;Yu, Hong-Bo;Wan, Su-Qin;Liu, Jing-Yao;Sun, Chia-Chung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1187-1194
    • /
    • 2011
  • The hydrogen abstraction reaction of $CF_3CH_2CHO$ + OH has been studied theoretically by dual-level direct dynamics method. Two stable conformers, trans- and cis-$CF_3CH_2CHO$, have been located, and there are four distinct OH hydrogen-abstraction channels from t-$CF_3CH_2CHO$ and two channels from c-$CF_3CH_2CHO$. The required potential energy surface information for the kinetic calculation was obtained at the MCG3-MPWB//M06-2X/aug-cc-pVDZ level. The rate constants, which were calculated using improved canonical transitionstate theory with small-curvature tunneling correction (ICVT/SCT) were fitted by a four-parameter Arrhenius equation. It is shown that the reaction proceeds predominantly via the H-abstraction from the -CHO group over the temperature range 200-2000 K. The calculated rate constants were in good agreement with the experimental data between 263 and 358 K.

GROUP THEORY FOR TETRAAMMINEPLATINUM(II) WITH $C_{2v}\;AN;C_{4v}$ POINT GROUP IN THE NON-RIGID SYSTEM

  • Ashrafi, Ali-Reza;Hamadanian, Masood
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.289-303
    • /
    • 2004
  • The non-rigid molecule group theory (NRG) in which the dynamical symmetry operations are defined as physical operations is a new field of chemistry. Smeyers in a series of papers applied this notion to determine the character table of restricted NRG of some molecules. In this work, a simple method is described, by means of which it is possible to calculate character tables for the symmetry group of molecules consisting of a number of NH3 groups attached to a rigid framework. We study the full non-rigid group (f-NRG) of tetraammineplatinum(II) with two separate symmetry groups C2v and C4v. We prove that they are groups of order 216 and 5184 with 27 and 45 conjugacy classes, respectively. Also, we will compute the character tables of these groups.

GALOIS GROUPS FOR PERMUTATIONS ON SETS

  • PARK HONG GOO
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.657-663
    • /
    • 2005
  • In this paper, we consider groups of permutations S on a set A acting on subsets X of A. In particular, we show that if $X_2{\subseteq}X_1{\subseteq}A$ and Y is an S-normal extension of $X_2 in X_1$, then the Galois group $G_{S}(X_1/Y){\;}of{\;}X_1{\;}over{\;}X_2$ relative to S is an S-closed subgroup of $G_{S}(X_1/X_2)$ in the setting of a Galois theory (correspondence) for this situation.

FULL NON-RIGID GROUP OF 2,3,5,6-TETRAMETHYLEPYRAZINE AS WREATH PRODUCT AND ITS SYMMETRY

  • Arezoomand, Majid;Taeri, Bijan
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.915-931
    • /
    • 2009
  • The non-rigid molecule group theory in which the dynamical symmetry operations are defined as physical operations is applied to deduce the character table of the full non-rigid molecule group (f-NRG) of 2,3,5,6-Tetramethylpyrazine The f-NRG of this molecule is seen to be isomorphic to the group $\mathbb{Z}_3{\wr}(\mathbb{Z}_2{\times}\mathbb{Z}_2)$, where $\mathbb{Z}_n$ is the cyclic group of order n, of order 324 which has 45 conjugacy classes. We determine the some properties and relations between characters of the group. Also, we examine the symmetry group of this molecule and show that its symmetry group is $\mathbb{Z}_2{\times}\mathbb{Z}_2$.

  • PDF

THE CHARACTER TABLE OF THE GROUP $GL_2(Q)$WHEN EXTENDED BY A CERTAIN GROUP OF ORDER TWO

  • Darafsheh, M.R.;Larki, F.Nowroozi
    • Journal of applied mathematics & informatics
    • /
    • 제7권3호
    • /
    • pp.875-886
    • /
    • 2000
  • Let G denote either of the groups $GL_2(q)$ or $SL_2(q)$. Then ${\theta}$:G -> G given by ${\theta}(A)$ = ${(A^t)}^{-l}$, where $A^t$ denotes the transpose of the matrix A, is an automorphism of G. Therefore we may form the group G.$<{\theta}>$ which is the split extension of the group G by the cyclic group $<{\theta}>$ of order 2. Our aim in this paper is to find the complex irreducible character table of G.$<{\theta}>$.

IMPULSIVE FUZZY SOLUTIONS FOR ABSTRACT SECOND ORDER PARTIAL NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

  • CHALISHAJAR, DIMPLEKUMAR N.;RAMESH, R.
    • Journal of Applied and Pure Mathematics
    • /
    • 제4권1_2호
    • /
    • pp.71-77
    • /
    • 2022
  • This work considers the existence and uniqueness of fuzzy solutions for impulsive abstract partial neutral functional differential systems. To establish the existence and uniqueness, we apply the concept of impulse, semi group theory and suitable fixed point theorem.

Reliability analysis by numerical quadrature and maximum entropy method

  • Zhu, Tulong
    • Structural Engineering and Mechanics
    • /
    • 제3권2호
    • /
    • pp.135-144
    • /
    • 1995
  • Since structural systems may fail in any one of several failure modes, computation of system reliability is always difficult. A method using numerical quadrature for computing structural system reliability with either one or more than one failure mode is presented in this paper. Statistically correlated safety margin equations are transformed into a group of uncorrelated variables and the joint density function of these uncorrelated variables can be generated by using the Maximum Entropy Method. Structural system reliability is then obtained by integrating the joint density function with the transformed safety domain enclosed within a set of linear equations. The Gaussian numerical integration method is introduced in order to improve computational accuracy. This method can be used to evaluate structural system reliability for Gaussian or non-Gaussian variables with either linear or nonlinear safety boundaries. It is also valid for implicit safety margins such as computer programs. Both the theory and the examples show that this method is simple in concept and easy to implement.

THE LAYOUT PROBLEM OF TWO KINDS OF GRAPH ELEMENTS WITH PERFORMANCE CONSTRAINTS AND ITS OPTIMALITY CONDITIONS

  • ZHANG XU;LANG YANHUAI;FENG ENMIN
    • Journal of applied mathematics & informatics
    • /
    • 제20권1_2호
    • /
    • pp.209-224
    • /
    • 2006
  • This paper presents an optimization model with performance constraints for two kinds of graph elements layout problem. The layout problem is partitioned into finite subproblems by using graph theory and group theory, such that each subproblem overcomes its on-off nature about optimal variable. Furthermore each subproblem is relaxed and the continuity about optimal variable doesn't change. We construct a min-max problem which is locally equivalent to the relaxed subproblem and develop the first order necessary and sufficient conditions for the relaxed subproblem by virtue of the min-max problem and the theories of convex analysis and nonsmooth optimization. The global optimal solution can be obtained through the first order optimality conditions.

Multi-scale model for coupled piezoelectric-inelastic behavior

  • Moreno-Navarro, Pablo;Ibrahimbegovic, Adnan;Damjanovic, Dragan
    • Coupled systems mechanics
    • /
    • 제10권6호
    • /
    • pp.521-544
    • /
    • 2021
  • In this work, we present the development of a 3D lattice-type model at microscale based upon the Voronoi-cell representation of material microstructure. This model can capture the coupling between mechanic and electric fields with non-linear constitutive behavior for both. More precisely, for electric part we consider the ferroelectric constitutive behavior with the possibility of domain switching polarization, which can be handled in the same fashion as deformation theory of plasticity. For mechanics part, we introduce the constitutive model of plasticity with the Armstrong-Frederick kinematic hardening. This model is used to simulate a complete coupling of the chosen electric and mechanics behavior with a multiscale approach implemented within the same computational architecture.