• Title/Summary/Keyword: computing model of temperature field

Search Result 11, Processing Time 0.033 seconds

A Numerical Study of Smoke Movement In Atrium Space (아트리움 공간에 있어서 연기 유동에 관한 수치해석적 연구)

  • 노재성;유홍선;정연태;김충익;윤명오
    • Fire Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.3-14
    • /
    • 1997
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire model : Zone model and Field model. The zone model used is the CFAST(version 1.6) model developed at the Building and Fire Research Laboratories, NIST in the USA. The field model is a self-developed frie field model based on Computational Fluid Dynamic (CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. For solving the liked set of velocity and pressure equation, the PISO algorithm, which strengthened the velocity-pressure coupling, was used. Since PISO algorithm is a time-marching procedure, computing time si very fast. A computational procedure for predicting velocity and temperature distribution in fire-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i.e Zone model and Field model predicted similar results for clear heights and the smoke layer temperature.

  • PDF

Rock mechanics and wellbore stability in Dongfang 1-1 Gas Field in South China Sea

  • Yan, Chuanliang;Deng, Jingen;Cheng, Yuanfang;Yan, Xinjiang;Yuan, Junliang;Deng, Fucheng
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.465-481
    • /
    • 2017
  • Thermal effect has great influence on wellbore stability in Dongfang 1-1 (DF 1-1) gas field, a reservoir with high-temperature and high-pressure. In order to analyze the wellbore stability in DF1-1 gas field, the variation of temperature field after drilling was analyzed. In addition, the effect of temperature changing on formation strength and the thermal expansion coefficients of formation were tested. On this basis, a wellbore stability model considering thermal effect was developed and the thermal effect on fracture pressure and collapse pressure was analyzed. One of the main challenges in this gas field is the decreasing temperature of the wellbore will reduce fracture pressure substantially, resulting in the drilling fluid leakage. If the drilling fluid density was reduced, kick or blowout may happen. Therefore, the key of safe drilling in DF1-1 gas field is to predict the fracture pressure accurately.

Analysis of Temperture Distribution in 2-D Power Transformer Using Hybrid Mesh Model (복합격자 생성기법을 이용한 전력용 변압기의 2차원 온도분포 해석)

  • Min, Kyung-Jo;Kim, Joong-Kyoung;Hahn, Sung-Chin;Joo, Soo-Won
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.993-995
    • /
    • 2005
  • Recently, the efficiency of power transformer is improved as well as the size is becoming smaller. So, it is very important that temperature characteristics of the transformer should be estimated and predicted precisely. This paper deals with the temperature distribution of power transformer by simplified 2-D hybrid mesh model. The temperature distribution of model transformer was obtained by CFD algorithm considering natural convection. Heat sources are calculated first by magnetic field analysis based on F.E.M. and are usedas the input data for thermal field problem based on computational fluid dynamics(CFD) algorithm. The calculated temperature distribution of the simplified 2-D power transformer model shows good results in accuracy as well as in computing time.

  • PDF

An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation

  • Peng, Guihan;Nakamura, Shozo;Zhu, Xinqun;Wu, Qingxiong;Wang, Hailiang
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.605-616
    • /
    • 2017
  • Concrete filled steel tubular (CFST) composite girder is a new type of structures for bridge constructions. The existing design codes cannot be used to predict the thermal stress in the CFST truss girder structures under solar radiation. This study is to develop the temperature gradient curves for predicting thermal stress of the structure based on field and laboratory monitoring data. An in-field testing had been carried out on Ganhaizi Bridge for over two months. Thermal couples were installed at the cross section of the CFST truss girder and the continuous data was collected every 30 minutes. A typical temperature gradient mode was then extracted by comparing temperature distributions at different times. To further verify the temperature gradient mode and investigate the evolution of temperature fields, an outdoor experiment was conducted on a 1:8 scale bridge model, which was installed with both thermal couples and strain gauges. The main factors including solar radiation and ambient temperature on the different positions were studied. Laboratory results were consistent with that from the in-field data and temperature gradient curves were obtained from the in-field and laboratory data. The relationship between the strain difference at top and bottom surfaces of the concrete deck and its corresponding temperature change was also obtained and a method based on curve fitting was proposed to predict the thermal strain under elevated temperature. The thermal stress model for CFST composite girder was derived. By the proposed model, the thermal stress was obtained from the temperature gradient curves. The results using the proposed model were agreed well with that by finite element modelling.

A TWO CAVITY MODEL FOR UMBRAL OSCILLATIONS

  • Lee, Jeong-Woo;Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.20 no.1
    • /
    • pp.27-47
    • /
    • 1987
  • In the present study a two-mode, separately concurring resonant cavity model is proposed for theoretical interpretation of the 3 minute umbral oscillation. The proposed model has been investigated by calculating the transmission coefficients of the waves propagating through the umbral photosphere (photospheric weak-field cavity) and chromosphere (chromospheric strong-field cavity) into the corona, for 3 different umbral model atmospheres by Staude (1982), Beebe et al. (1982) and Avrett (1981). In computing the transmission coefficients we made use of multi-layer approximation by representing the umbra] atmosphere by a number of separate layers with (1) temperature varying linearly with depth and (2) temperature constant within each layer. The medium is assumed to be compressible, non-viscous, perfectly conducting under gravity. The computed resonant periods, transmission spectra, phase spectra, and kinetic energy density of the waves associated with the oscillations are presented in comparison with the observations and their model dependent characteristics are discussed.

  • PDF

A Numerical Study on Smoke Movement in Longitudinal Ventilation Tunnel Fires Using a Zone Model (존 모델을 이용한 종류식 배연 터널 화재시 연기 거동에 대한 수치해석적 연구)

  • Kim, Hyun-Jeong;Roh, Jae-Seong;Kim, Dong-Hyeon;Jang, Yong-Jun;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1319-1324
    • /
    • 2007
  • Many researches have been performed to analyze the smoke movement in tunnel fires by using field model. Recently, FDS(Fire Dynamics Simulator) v.4, which is one of the field model and developed from NIST(National Institute of Standards and Technology), is widely used. In tunnel fires, FDS can show detail results in local point, but it has difficulties in boundary condition and taking long computing time as the number of grid increases. So, there is a need to use alternative method for tunnel fire simulation. A zone model is different kind of CFD method and solves ordinary differential equation based on conservation and auxiliary equations. It shows good macroscopic view in less computing time compared to field model. In this study, therefore, to confirm the applicability of CFAST in tunnel fire analysis, numerical simulations using CFAST are conducted to analyze smoke movement in longitudinal ventilation reduced-scale tunnel fires. Then the results are compared with experimental results. The differences of temperature and critical velocity between numerical results and experimental data are over $30^{\circ}C$ and 0.9m/s, respectively. These values are out of error range. It shows that CFAST 6.0 is hard to be used for tunnel fire simulation.

  • PDF

A new method solving the temperature field of concrete around cooling pipes

  • Zhu, Zhenyang;Qiang, Sheng;Chen, Weimin
    • Computers and Concrete
    • /
    • v.11 no.5
    • /
    • pp.441-462
    • /
    • 2013
  • When using the conventional finite element method, a great number of grid nodes are necessary to describe the large and uneven temperature gradients in the concrete around cooling pipes when calculating the temperature field of mass concrete with cooling pipes. In this paper, the temperature gradient properties of the concrete around a pipe were studied. A new calculation method was developed based on these properties and an explicit iterative algorithm. With a small number of grid nodes, both the temperature distribution along the cooling pipe and the temperature field of the concrete around the water pipe can be correctly calculated with this new method. In conventional computing models, the cooling pipes are regarded as the third boundary condition when solving a model of concrete with plastic pipes, which is an approximate way. At the same time, the corresponding parameters have to be got by expensive experiments and inversion. But in the proposed method, the boundary condition is described strictly, and thus is more reliable and economical. And numerical examples were used to illustrate that this method is accurate, efficient and applicable to the actual engineering.

A reduced order model for fission gas diffusion in columnar grains

  • D. Pizzocri;M. Di Gennaro;T. Barani;F.A.B. Silva;G. Zullo;S. Lorenzi;A. Cammi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3983-3995
    • /
    • 2023
  • In fast reactors, restructuring of the fuel micro-structure driven by high temperature and high temperature gradient can cause the formation of columnar grains. The non-spheroidal shape and the non-uniform temperature field in such columnar grains implies that standard models for fission gas diffusion can not be applied. To tackle this issue, we present a reduced order model for the fission gas diffusion process which is applicable in different geometries and with non-uniform temperature fields, maintaining a computational requirement in line with its application in fuel performance codes. This innovative application of reduced order models as meso-scale tools within fuel performance codes represents a first-of-a-kind achievement that can be extended beyond fission gas behaviour.

Numerical Experiments of Ocean Acoustic Tomography in the East Sea of Korea

  • Han, Sang-Kyu;Na, Jung-Yul;Lee, Jae-Hak
    • Journal of the korean society of oceanography
    • /
    • v.31 no.2
    • /
    • pp.64-74
    • /
    • 1996
  • Numerical experiments of OAT (Ocean Acoustic Tomography) are carried out in the East Sea of Korea where the canonical ocean has been perturbed by a mesoscale warm eddy and a thermal front. In order to estimate the horizontal and vertical structure of water temperature of the perturbed ocean, the experimental area is divided into 16 cells with 8 pairs of sources and receivers for a horizontal slice and the water column is divided into 8 layers for a vertical slice. The inversely estimated temperature field by using SVD (Singular Value Decomposition) method reveals the eddy and frontal structure clearly. The rms errors of the two horizontal slices are less than $0.4^{\circ}C$ and $1.7^{\circ}C$ at 400 m and 200 m depths, respectively, while the error in the vertical slice is less than $1.0^{\circ}C.$ For better estimation of temperature by OAT method, particularly for the East Sea, a range-dependent ray model should be used to solve the forward problem. At the same time, improvement in computing the refracted ray path between vertical layers is required to obtain more accurate travel time information. The results of the present experiment give rise to a possibility of application of OAT in remote sensing of the ocean thermal structure.

  • PDF

Nonlinear thermal buckling of bi-directional functionally graded nanobeams

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.669-682
    • /
    • 2019
  • We in this article study nonlinear thermal buckling of bi-directional functionally graded beams in the theoretical frameworks of nonlocal strain graded theory. To begin with, it is assumed that the effective material properties of beams vary continuously in both the thickness and width directions. Then, we utilize a higher-order shear deformation theory that includes a physical neutral surface to derive the size-dependent governing equations combining with the Hamilton's principle and the von $K{\acute{a}}rm{\acute{a}}n$ geometric nonlinearity. It should be pointed out that the established model, containing a nonlocal parameter and a strain gradient length scale parameter, can availably account for both the influence of nonlocal elastic stress field and the influence of strain gradient stress field. Subsequently, via using a easier group of initial asymptotic solutions, the corresponding analytical solution of thermal buckling of beams is obtained with the help of perturbation method. Finally, a parametric study is carried out in detail after validating the present analysis, especially for the effects of a nonlocal parameter, a strain gradient length scale parameter and the ratio of the two on the critical thermal buckling temperature of beams.