• Title/Summary/Keyword: construction load

Search Result 3,562, Processing Time 0.031 seconds

Development of a Musculoskeletal Load Measuring Device for Construction Workers Based on Accelerometers and Gyro Sensors

  • Kim, Kyoon-Tai
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.618-626
    • /
    • 2011
  • The characteristics of construction work cause excessive strain on specific body parts of the construction craft workers. However, there are few tools to mane an accurate measurement of the load on the musculoskeletal system, and the musculoskeletal disorders (MSDs) experienced by the workers have not been properly understood. So, there is an urgent need for development of a tool to measure the load on the musculoskeletal system. Therefore, this research aims to develop a musculoskeletal load measuring device for construction workers. In order to eliminate the noise and errors, an accelerometer, gyro sensors and the Kalman Filter are used in the device developed in this research.

Structural Safety Analysis of a Long Span Cable-stayed Bridge with a Partially Earth Anchored Cable System on Dynamic Loads during Construction (일부타정식 케이블 시스템 장경간 사장교의 시공 중 동적 안전성 분석)

  • Won, Jeong-Hun;Kim, Gyeoung Yun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.104-110
    • /
    • 2016
  • The effect of a partially earth anchored cable system on the structural safety of a long span cable-stayed bridge under seismic and wind loads are examined during construction process. By assuming the FCM (free cantilever method) construction stages with structural vulnerability, a multi-mode spectral analysis and a multi-mode buffeting analysis are performed for specific seismic load and wind load, respectively. Results show that the wind load dominates the structural safety of a cable-stayed bridge during construction. And, the application of a partially earth anchored cable system can enhance structural safety under wind load since the maximum pylon moment in the model with partially earth anchored cable system is reduced by 49% under wind load. In contrast, the maximum pylon moment occurred by seismic load is only decreased by 8%.

Behavior of Lateral Earth Pressure around the Underpass Constructed by the STS Construction Method

  • Jin, Kyu-Nam;Kim, Hyo-Jin;Sim, Young-Jong
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.271-279
    • /
    • 2016
  • Recently developed trenchless construction methods ensure stability for the ground settlement by inserting steel pipes along the underpass section and integrating steel pipes before ground excavation to form pipe-roof. This study is to confirm the reinforcing effect of pipe-roof by measuring lateral earth pressure acting on the underpass constructed by the STS (Steel Tube Slab) construction method. For this purpose, lateral earth pressure was measured at the left and right side of the pipe-roof after installing earth pressure cells. As a result, lateral earth pressure was measured with considerable reduction because the integrated pipe-roof shared surcharge. Therefore, economic design for the underpass could be expected by sharing design load by pipe-roof. In addition, construction cost was analyzed according to the design-load sharing ratio by pipe-roof. As pipe-roof shares design load by 40%, the total construction cost can decrease by almost 10% in the case of four-lane underpass.

Effects of Shore Stiffness and Concrete Cracking on Slab Construction Load I: Theory (슬래브의 시공하중에 대한 동바리 강성 및 슬래브 균열의 영향 I: 이론)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Im, Ju-Hyeuk;Kim, Jae-Yo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.41-50
    • /
    • 2010
  • Long-term floor deflection caused by excessive construction load became a critical issue for the design of concrete slabs, as a flat plate is becoming popular for tall buildings. To estimate the concrete cracking and deflection of an early age slab, the construction load should be accurately evaluated. The magnitude of construction load acting on a slab is affected by various design parameters. Most of existing methods for estimating construction load addressed only the effects of the construction period per story, material properties of early age concrete, and the number of shored floors. In the present study, in addition to these parameter, the effects of shore stiffness and concrete cracking on construction load were numerically studied. Based on the result, a simplified method for estimating construction load was developed. In the proposed method, the calculation of construction load is divided to two steps: 1)Onset of concrete placement at a top slab. 2)Removal of shoring. At each step, the construction load increment is distributed to the floor slabs according to the ratio of slab stiffness to shore stiffness. The proposed method was compared with existing methods. In a companion paper, the proposed method will be verified by the comparison with the measurements of actual construction loads.

Construction Sequential Analysis on RC Building Structure considering Temperature Changes (외부 온도변화를 고려한 RC 건축구조물의 시공단계해석)

  • Kang, Su-Min;Oh, Jae-Keun;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.229-232
    • /
    • 2008
  • In rapid cycle construction, RC structure which is not cured fully can be loaded with construction load and this construction load can influence on the safety of construction and cracks on slabs. Therefore, to reduce the term of construction, the safety of construction and prevention of cracks should be assured against construction load. In the previous study, temperature load can significantly influence on the behavior of structure under construction. However, existing construction sequential analysis or design code do not consider temperature load reasonably. In the present study, through construction sequential analysis method using FE analysis, the behavior of structure under construction was analyzed according to temperature changes. According to the results of analysis, as the temperature falls, shoring load drops and the temperature rises, shoring load rises. These variations of shoring load can affect the safety of construction. Moment of slab goes up by fall in temperature. This increase of moment can cause cracks on the slab. Therefore to assure the safety on construction and prevent cracks on slabs, temperature load has to be considered reasonably in construction sequential analysis.

  • PDF

Effects of Different Advance Organizers on Mental Model Construction and Cognitive Load Decrease

  • OH, Sun-A;KIM, Yeun-Soon;JUNG, Eun-Kyung;KIM, Hoi-Soo
    • Educational Technology International
    • /
    • v.10 no.2
    • /
    • pp.145-166
    • /
    • 2009
  • The purpose of this study was to investigate why advance organizers (AO) are effective in promoting comprehension and mental model formation in terms of cognitive load. Two experimental groups: a concept-map AO group and a key-word AO group and one control group were used. This study considered cognitive load in view of Baddeley's working memory model: central executive (CE), phonological loop (PL), and visuo-spatial sketch pad (VSSP). The present experiment directly examined cognitive load using dual task methodology. The results were as follows: central executive (CE) suppression task achievement for the concept map AO group was higher than the key word AO group and control group. Comprehension and mental model construction for the concept map AO group were higher than the other groups. These results indicated that the superiority of concept map AO owing to CE load decrement occurred with comprehension and mental model construction in learning. Thus, the available resources produced by CE load reduction may have been invested for comprehension and mental model construction of learning contents.

A Comparison Study between Top-down Load Test and Bi-directional Load Test Analysis Method in Rock-socketed Small Size Drilled Shaft (암반소켓된 소구경 현장타설말뚝의 정재하시험과 양방향재하시험 분석법 비교연구)

  • Song, Myungjun;Song, Younghun;Jung, Minhyung;Park, Youngho;Park, Jaehyun;Lee, Juhyung;Chung, Moonkyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.5-12
    • /
    • 2013
  • In this study, each top-down load test and bi-directional load test has been performed on the 480mm diameter of two rock socketed drilled shafts, which are located next to each other, and the results have been compared. The result shows that the settlement from the equivalent load-settlement curve of bi-directional load test is smaller than one from top-down load test, because elastic is not considered in equivalent load-settlement curve of bi-directional load test. Therefore elastic shortening should be considered to obtain appropriate equivalent load-settlement curve. Three existing methods used to obtain equivalent load-settlement curve with consideration of elastic shortening has been compared with the result of top-down load test. The result shows that those existing methods are sufficiently applicable to the design. In addition, result of comparison between top-down load test and bi-directional load test shows that bi-directional load test was found to overestimate bearing capacity because it does not consider pile body failure.

Measurement and Prediction of Long-term Deflection of Flat Plate Affected by Construction Load (시공하중에 의한 플랫 플레이트의 장기처짐 계측 및 해석)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Kim, Jae-Yo;Kim, Yong-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.615-625
    • /
    • 2014
  • Excessive long-term slab deflection caused by construction load is a critical issue for the design of concrete slabs, as long span flat plates become popular for tall buildings. In the present study, the effect of construction load causing early slab cracking on the long-term deflection was theoretically studied. On the basis of the result, a numerical analysis method was developed to predict the long-term deflection of flat plates. In the proposed method, immediate deflection due to slab cracking and long-term effect of creep and shrinkage were considered. To verify the construction load effect, long-term slab deflections were measured in actual flat plate buildings under construction. The results showed that the immediate deflection due to the construction load increased significantly the long-term deflection. The proposed method was used to predict the deflections of the buildings. The results were compared with the measurement results. The predictions agree well with the long-term deflections of flat plate affected by construction load.

A Case Study on Construction Cost Reduction of Large-size Building Foundation using Bi-directional High Pressure Pile Load Test(BDHPLT) (양방향 고유압 말뚝재하시험을 이용한 대형건축물 기초의 공사비 절감에 관한 사례 연구)

  • Kim, Nam-Il;Kim, Sang-Il;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.518-525
    • /
    • 2009
  • The bi-directional high pressure pile load test(BDH PLT) which is a kind of pile load tests was conducted to find out a reasonable design procedure of large-diameter drilled shafts of large-size building structures. The behaviors of bearing capacity and settlement of the large-diameter drilled shafts were analyzed and the results obtained from BDH PLT were also compared with those obtained from the equations suggested in the specification. In case of the reasonable design procedure adopted, the construction cost could be saved at least 15 ~ 28%. It could be concluded that BDH PLT should be needed for the foundation construction cost reduction of the high-rise building structures.

  • PDF

A Study on the Transmission Tower Foundation Design and Construction Method - A Focus of Cylindrical Foundation - (가공 송전 철탑기초 설계 및 시공 방법 연구 - 심형기초를 중심으로 -)

  • Jang, Suk-Han;Kim, Hee-Kwang;Lee, Kang-Hyeon;Han, Kyung-Soo;Ham, Bang-Wook;Chung, Ki-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1031-1034
    • /
    • 2007
  • Electric transmission lines pass through a variety of area. Foundation supporting the conductors and tower are selected properly in accordance with external load, for example dead load, wind load, snow load, construction load etc, and topography and geology condition. Typical types of foundation are as follows: pad foundation for small load and hard soil or rock in mountainous area, pile foundation for medium or large load and soft soil in plain field area. This paper introduced cylindrical foundation design & construction for large load and mountainous area. This foundation failure mode against pulling-out show splitting failure by tensile force toward circumferential direction.