• Title/Summary/Keyword: crystal base

Search Result 182, Processing Time 0.03 seconds

Isolation and Identification of Phenolic Tertiary and Quaternary Alkaloids from Thalictrum uchiyamai (한국산 Thalictrum속 식물의 성분연구(II) 자주꿩의 다리 뿌리의 성분)

  • 이인란
    • YAKHAK HOEJI
    • /
    • v.28 no.3
    • /
    • pp.185-190
    • /
    • 1984
  • Protothalipine colorless needle crystal, mp $195-6^{\circ}$, $C_{21}H_{25}NO_{5}$) and jatrorrhizine chloride (Base A, orange needle crystal, mp $198^{\circ}$) are identified by chemical, spectral analysis, and comparison with authentic sample. Base B (reddish crystal, mp $192-4^{\circ}$) might be a artifact substance, which was changed from the jatrorrhizine chloride. Base C (yellowish needle crystal, mp $228~230^{\circ}$) and Base D (reddish needle crystal, mp $211~213^{\circ}$) were assumed to be thalifendine chloride, desoxythalidastine chloride by phytochemical and spectral analysis respectively.

  • PDF

The Effect of Base Metal Grain Boundary on Isothermal Solidification Phenomena during TLP Bonding of Ni Base Superalloys (액상확산접합한 Ni기 초내열합금의 등온응고거동에 미치는 모재결정입계의 영향)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.325-333
    • /
    • 2001
  • The effect of base metal grain size on isothermal solidification behavior of Ni-base superalloy, CMSX-2 during transient liquid phase (TLP) bonding was investigated employing MBF-80 insert metal. TLP-bonding of single crystal. coarse-grained and fine-grained CMSX-2 was carried out at 1373∼1548k for various holding time in vacuum. The eutectic width diminished linearly with the square root of holding time during isothermal solidification process for single crystal, coarse-grained and fine-grained base metals. The completion time for isothermal solidification decreased in the order ; single crystal, coarse-grained and fine-grained base metals. The difference of isothermal solidification rates produced when bonding the different base metals could be explained quantitatively by the effect of base metal grain boundaries on the apparent average diffusion coefficient of boron in CMSX-2.

  • PDF

LASER WELDING OF SINGLE CRYSTAL NICKEL BASE SUPERALLOY CMSX-4

  • Yanagawa, Hiroto;Nakamura, Daisuke;Hirose, Akio;Kobayashi, Kojiro F.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.193-198
    • /
    • 2002
  • In 1his paper, applicability of laser welding to joining process of single crystal nickel base superalloy turbine blades was investigated. Because heat input of laser welding is more precisely controlled 1han TIG welding, it is possible to optimize solidification microstructure of the welds. Since in single crystal nickel base superalloy the crystal orientation have a significant effect on the strength, it is important to control the solidification microstructure in the fusion zone. A single crystal nickel base supera1loy, CMSX-4, plates were bead-on welded and butt welded using a $CO_2$ laser. The effects of microstructure and crystal orientation on properties of the weld joints were investigated. In bead-on weldling, welding directions were deviated from the base metal [100] direction by 0, 5, 15 and 30 degrees. The welds with deviation angles of 15 and 30 degrees showed fusion zone transverse cracks. As the deviation angles became larger, the fusion zone had more cracking. In the cross section microstructure, the fusion zone grains in 0 and 5 degrees welds grew epitaxially from the base metal spins except for the bead neck regions. The grains in the bead neck regions contained stray crystals. As deviation angles increased, number of the stray crystals increased. In butt welding, the declinations of the crystal orientation of the two base metals varied 0, 5 and 10 degrees. All beads had no cracks. In the 5 degrees bead, the cross section and surface microstructures showed that the fusion zone grains grew epitaxially from the base metal grains. However, the 10 degrees bead, the bead cross section and surface contained the stray crystals in the center of the welds. Orientations of the stray crystals accorded with the heat flow directions in the weld pool. When the welding direction was deviated from the base metal [100] direction, cracks appeared in the area including the stray crystals. The cracks developed along the grain boundaries of the stray crystals with high angles in the final solidification regions at the center of the welds. The fracture surfaces were covered with liquid film. The cracks, therefore, found to be solidification cracks due to the presence of low melting eutectic. As the results, in both bead-on welding and butt welding the deviation angles should be control within 5 degrees for preventing the fusion zone cracks. To investigate the mechanical properties of the weld joints, high temperature tensile tests for bead-on welds with deviation angles of 0 and 5 degrees and the butt welds with dec1ination angles of 0, 5 and 10 degrees were conducted at 1123K. The the tensile strength of all weld joints were more 1han 800MPa that is almost 80% of the tensile strength of the base metal. The strength of the laser weld joints were more than twice that of tue TIG weld joints with a filler metal of Inconel 625. The results reveals 1hat laser welding is more effective joining process for single crystal nickelbase superalloy turbine blades 1han TIG welding.

  • PDF

The Crystal and Molecular Structure of Chloramphenicol Base

  • Shin, Whan-Chul;Pyo, Myung_Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.4
    • /
    • pp.158-162
    • /
    • 1984
  • The crystal structure of chloramphenicol base, $C_9H_{l2}N_2O_4$, the deacylated base of antibiotic chloramphenicol, has been determined by X-ray diffraction techniques using diffractometer data obtained by the ${\omega}-2{\theta}$ scan technique with CuK${\alpha}$ radiation from a crystal with space group symmetry $P2_12_12_1$ and unit cell parameters a = 22.322(6), b = 7.535(6), c = 5.781(5) ${\AA}$. The structure was solved by direct methods and refined by full-matrix least-squares to a final R = 0.051 for the 573 observed reflections. The overall conformation of the base is quite different from those of the chloramphenicol congeners which are similar despite the presence of many rotatable single bonds. The propane chain in the base is bent with respect to the phenyl ring, while it is extended in the chloramphenicol congeners. There is no intramolecular hydrogen bond between the hydroxyl groups of the propanediol moiety. All of the molecules in the crystal lattice are connected by a three-dimensional hydrogen bonding network.

High Temperature Tensile Property of Transient Liquid Bonded Joints of Ni-base Single Crystal Superalloy (액상확산접합한 Ni기 단결정 초내열합금의 고온인장특성)

  • 김대업;강정윤
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.106-113
    • /
    • 2000
  • Single crystallization behavior ad high temperature tensile properties of TLP bonded joints of Ni-base single crystal superalloy, CMSX-2 were investigated using MBF-80 and F-24 insert metals. CMSX-2 was bonded at 1523~1548K for 1.5~1.8ks in vacuum. The (100) orientation of bonded specimen was aligned perpendicular to the joint interface. Crystallographic orientation analyzed points over the bonded region possessed the almost same orientation across the joint interface and misorientation $\Delta^{\theta}$ was negligibly small in as-bonded and post-bond heat-treated situations. It was confirmed that single crystallization could be readily achieved during TLP bonding. The tensile strengths of all joints at elevated temperatures were equal to or greater than those of base metal the range of testing temperature between 923K and 1173K. The elongation and reduction of area in values were almost the same as those of base metal. SEM observation of the fracture surfaces of joints after tensile test revealed that the fracture surface indicated the similar morphologies each other, and that the fracture of joints occurred in the base metal in any cases.

  • PDF

Coordination of an Amino Alcohol Schiff Base Ligand Toward Cd(II)

  • Mardani, Zahra;Hakimi, Mohammad;Moeini, Keyvan;Mohr, Fabian
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • A potentially tetradentate Schiff base ligand, 2-((2-((pyridin-2-ylmethylene)amino)ethyl)amino)ethan-1-ol (PMAE), and its cadmium(II) complex, [$Cd(PMAE)I_2$] (1), were prepared and characterized by elemental analysis, FT-IR, Raman, $^1H$ and $^{13}C$ NMR spectroscopies and single-crystal X-ray diffraction. In the crystal structure of 1, the cadmium atom has a slightly distorted square-pyramidal geometry and a $CdN_3I_2$ environment in which the PMAE acts as an $N_3$-donor. In the crystal packing of the complex, the alcohol and amine groups of the coordinated ligands participate in hydrogen bonding with iodide ions and form $R^2{_2}(14)$ and $R^2{_2}(8)$ hydrogen bond motifs, respectively. In addition to the hydrogen bonds, the crystal network is stabilized by ${\pi}-{\pi}$ stacking interactions between pyridine rings. The thermodynamic stability of the isolated ligand and its cadmium complex along with their charge distribution patterns were studied by DFT and NBO analysis.

Creep-Rupture and Fatigue Properties of Transient Liquid Phase Bonded Joints of Ni-Base Single Crystal Superalloy (액상확산접합한 Ni기 단결정 초내열합금의 크리프 파단 및 피로특성)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.82-87
    • /
    • 2001
  • The creep-rupture and low cycle fatigue properties of transient liquid phase bonded joints of Ni-base single crystal superalloy, CMSX-2 was investigated using MBF-80 insert metal. The (100) orientation of bonded specimen was aligned perpendicular to the joint interface. CMSX-2 was bonded at 1523K for 1.8ks in vacuum, optimum bonding condition. The creep rupture strength and rupture lives of the joints were the almost identical to ones of the base metal. SEM observation of the fracture surfaces of joints after creep rupture test revealed that the fracture surfaces classified three types of region, ductile fracture surface, cleavage fracture surface and interfacial fracture surface. The low cycle fatigue properties of the joints were also the same level as those of base metal. The elongation and reduction of area values of joints were comparable to those of base metal while fell down on creep rupture condition of high temperature.

  • PDF

Modeling the Hall-Petch Relation of Ni-Base Polycrystalline Superalloys Using Strain-Gradient Crystal Plasticity Finite Element Method (변형구배 결정소성 유한요소해석법을 이용한 니켈기 다결정 합금의 Hall-Petch 관계 모델링)

  • Choi, Yoon Suk;Cho, Kyung-Mox;Nam, Dae-Geun;Choi, Il-Dong
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.81-89
    • /
    • 2015
  • A strain-gradient crystal plasticity constitutive model was developed in order to predict the Hall-Petch behavior of a Ni-base polycrystalline superalloy. The constitutive model involves statistically stored dislocation and geometrically necessary dislocation densities, which were incorporated into the Bailey-Hirsch type flow stress equation with six strength interaction coefficients. A strain-gradient term (called slip-system lattice incompatibility) developed by Acharya was used to calculate the geometrically necessary dislocation density. The description of Kocks-Argon-Ashby type thermally activated strain rate was also used to represent the shear rate of an individual slip system. The constitutive model was implemented in a user material subroutine for crystal plasticity finite element method simulations. The grain size dependence of the flow stress (viz., the Hall-Petch behavior) was predicted for a Ni-base polycrystalline superalloy NIMONIC PE16. Simulation results showed that the present constitutive model fairly reasonably predicts 0.2%-offset yield stresses in a limited range of the grain size.