• Title/Summary/Keyword: cube roots

Search Result 11, Processing Time 0.03 seconds

POLYNOMIAL REPRESENTATIONS FOR n-TH ROOTS IN FINITE FIELDS

  • Chang, Seunghwan;Kim, Bihtnara;Lee, Hyang-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.209-224
    • /
    • 2015
  • Computing square, cube and n-th roots in general, in finite fields, are important computational problems with significant applications to cryptography. One interesting approach to computational problems is by using polynomial representations. Agou, Del$\acute{e}$eglise and Nicolas proved results concerning the lower bounds for the length of polynomials representing square roots modulo a prime p. We generalize the results by considering n-th roots over finite fields for arbitrary n > 2.

Efficient Formulas for Cube roots in $F_{3^m}$ for Pairing Cryptography (페어링 암호 연산을 위한 $F_{3^m}$에서의 효율적인 세제곱근 연산 방법)

  • Cho, Young-In;Chang, Nam-Su;Kim, Chang-Han;Park, Young-Ho;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.2
    • /
    • pp.3-11
    • /
    • 2011
  • Evaluation of cube roots in characteristic three finite fields is required for Tate (or modified Tate) pairing computation. The Hamming weights (the number of nonzero coefficients) in the polynomial representations of $x^{1/3}$ and $x^{2/3}$ determine the efficiency of cube roots computation, where $F_{3^m}$is represented as $F_3[x]/(f)$ and $f(x)=x^m+ax^k+b{\in}F_3[x]$ (a, $b{\in}F_3$) is an irreducible trinomial. O. Ahmadi et al. determined the Hamming weights of $x^{1/3}$ and $x^{2/3}$ for all irreducible trinomials. In this paper, we present formulas for cube roots in $F_{3^m}$ using the shifted polynomial basis(SPB). Moreover, we provide the suitable shifted polynomial basis bring no further modular reduction process.

Two Types of Algorithms for Finding the Cube Root in Finite Fields (유한체상에서 세제곱근을 찾는 두 종류의 알고리즘)

  • Cho, Gook Hwa
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.5
    • /
    • pp.499-503
    • /
    • 2016
  • We study algorithms that can efficiently find cube roots by modifying Cipolla-Lehmer algorithm. In this paper, we present two type algorithms for finding cube roots in finite field, which improves Cipolla-Lehmer algorithm. If the number of multiplications of two type algorithms has a little bit of a difference, then it is more efficient algorithm which have less storage variables.

Fast Algorithms for Computing Floating-Point Reciprocal Cube Root Functions

  • Leonid Moroz;Volodymyr Samotyy;Cezary Walczyk
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.84-90
    • /
    • 2023
  • In this article the problem of computing floating-point reciprocal cube root functions is considered. Our new algorithms for this task decrease the number of arithmetic operations used for computing $1/{\sqrt[3]{x}}$. A new approach for selection of magic constants is presented in order to minimize the computation time for reciprocal cube roots of arguments with movable decimal point. The underlying theory enables partitioning of the base argument range x∈[1,8) into 3 segments, what in turn increases accuracy of initial function approximation and decreases the number of iterations to one. Three best algorithms were implemented and carefully tested on 32-bit microcontroller with ARM core. Their custom C implementations were favourable compared with the algorithm based on cbrtf(x) function taken from C <math.h> library on three different hardware platforms. As a result, the new fast approximation algorithm for the function $1/{\sqrt[3]{x}}$ was determined that outperforms all other algorithms in terms of computation time and cycle count.

Square and Cube Root Algorithms in Finite Field and Their Applications (유한체상의 제곱근과 세제곱근을 찾는 알고리즘과 그 응용)

  • Cho, Gook Hwa;Ha, Eunhye;Koo, Namhun;Kwon, Soonhak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1031-1037
    • /
    • 2012
  • We study an algorithm that can efficiently find square roots and cube roots by modifying Tonelli-Shanks algorithm, which has an application in Number Field Sieve (NFS). The Number Field Sieve, the fastest known factoring algorithm, is a powerful tool for factoring very large integer. NFS first chooses two polynomials having common root modulo N, and it consists of the following four major steps; 1. Polynomial Selection 2. Sieving 3. Matrix 4. Square Root. The last step of NFS needs the process of square root computation in Number Field, which can be computed via square root algorithm over finite field.

Solutions of Equations in Chosun Mathematics (조선산학(朝鮮算學)의 방정식 해법(解法))

  • Kim, Chang-Il;Yun, Hye-Soon
    • Journal for History of Mathematics
    • /
    • v.22 no.4
    • /
    • pp.29-40
    • /
    • 2009
  • we know that Zeng Cheng Kai Fang Fa is the generalization of the method of square roots and cube roots of ancient through the investigation of China mathematics. In this paper, we have research on traditional solutions equations of China mathematics and the development solutions of equations used by Chosun mathematicians.

  • PDF

Kaifangfa and Translation of Coordinate Axes (개방법(開方法)과 좌표축(座標軸)의 평행이동(平行移動))

  • Hong, Sung Sa;Hong, Young Hee;Chang, Hyewon
    • Journal for History of Mathematics
    • /
    • v.27 no.6
    • /
    • pp.387-394
    • /
    • 2014
  • Since ancient civilization, solving equations has become one of the most important subjects in mathematics and mathematics education. The extractions of square roots and cube roots were first dealt in Jiuzhang Suanshu in the setting of subdivisions. Extending these, Shisuo Kaifangfa and Zengcheng Kaifangfa were introduced in the 11th century and the subsequent development became one of the most important contributions to mathematics in the East Asian mathematics. The translation of coordinate axes plays an important role in school mathematics. Connecting the translation and Kaifangfa, we find strong didactical implications for improving students' understanding the history of Kaifangfa together with the translation itself although the latter is irrelevant to the former's historical development.

History of Fan Ji and Yi Ji (번적과 익적의 역사)

  • Hong, Sung-Sa;Hong, Young-Hee;Chang, Hye-Won
    • Journal for History of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.39-54
    • /
    • 2005
  • In Chinese Mathematics, Jia Xian(要憲) introduced Zeng cheng kai fang fa(增乘開方法) to get approximations of solutions of Polynomial equations which is a generalization of square roots and cube roots in Jiu zhang suan shu. The synthetic divisions in Zeng cheng kai fang fa give ise to two concepts of Fan il(飜積) and Yi il(益積) which were extensively used in Chosun Dynasty Mathematics. We first study their history in China and Chosun Dynasty and then investigate the historical fact that Chosun mathematicians Nam Byung Gil(南秉吉) and Lee Sang Hyuk(李尙爀) obtained the sufficient conditions for Fan il and Yi il for quadratic equations and proved them in the middle of 19th century.

  • PDF

Park Yul and His San Hak Won Bon(算學原本) (박율의 산학원본)

  • Kim, Young-Wook;Hong, Sung-Sa;Hong, Young-Hee
    • Journal for History of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.1-16
    • /
    • 2005
  • Chosun dynasty mathematician Park Yul (1621 - ?) wrote San Hak Won Bon(算學原本) which was posthumously published in 1700 by his son Park Du Se (朴斗世). It is the first mathematics book whose publishing date is known, although we have Muk Sa Jib San Bub (默思集算法) by Gyung Sun Jing (慶善徵, 1616-?). San Hak Won Bon is the first Chosun book which deals with tian yuan shu (天元術) and was quoted by many Chosun authors. We do find it in the library in Korea University. In this paper, we investigate its contents together with its historical significance and influences to the development of Chosun dynasty Mathematics and conclude that Park Yul is one of the most prominent Chosun dynasty mathematicians.

  • PDF

Zengcheng Kaifangfa and Zeros of Polynomials (증승개방법(增乘開方法)과 다항방정식(多項方程式)의 해(解))

  • Hong, Sung Sa;Hong, Young Hee;Kim, Chang Il
    • Journal for History of Mathematics
    • /
    • v.33 no.6
    • /
    • pp.303-314
    • /
    • 2020
  • Extending the method of extractions of square and cube roots in Jiuzhang Suanshu, Jia Xian introduced zengcheng kaifangfa in the 11th century. The process of zengcheng kaifangfa is exactly the same with that in Ruffini-Horner method introduced in the 19th century. The latter is based on the synthetic divisions, but zengcheng kaifangfa uses the binomial expansions. Since zengcheng kaifangfa is based on binomial expansions, traditional mathematicians in East Asia could not relate the fact that solutions of polynomial equation p(x) = 0 are determined by the linear factorization of p(x). The purpose of this paper is to reveal the difference between the mathematical structures of zengcheng kaifangfa and Ruffini-Honer method. For this object, we first discuss the reasons for zengcheng kaifangfa having difficulties to connect solutions with linear factors. Furthermore, investigating multiple solutions of equations constructed by tianyuanshu, we show differences between two methods and the structure of word problems in the East Asian mathematics.