• Title/Summary/Keyword: cyclic surfaces

Search Result 107, Processing Time 0.026 seconds

CENTROAFFINE GEOMETRY OF RULED SURFACES AND CENTERED CYCLIC SURFACES IN ℝ4

  • Yang, Yun;Yu, Yanhua
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.987-1004
    • /
    • 2018
  • In this paper, we get several centroaffine invariant properties for a ruled surface in ${\mathbb{R}}^4$ with centroaffine theories of codimension two. Then by solving certain partial differential equations and studying a centroaffine surface with some centroaffine invariant properties in ${\mathbb{R}}^4$, we obtain such a surface is centroaffinely equivalent to a ruled surface or one of the flat centered cyclic surfaces. Furthermore, some centroaffine invariant properties for centered cyclic surfaces are considered.

CMC SURFACES FOLIATED BY ELLIPSES IN EUCLIDEAN SPACE E3

  • Ali, Ahmad Tawfik
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.701-718
    • /
    • 2018
  • In this paper, we will study the constant mean curvature (CMC) surfaces foliated by ellipses in three dimensional Euclidean space $E^3$. We prove that: (1): Surfaces foliated by ellipses are CMC surfaces if and only if it is a part of generalized cylinder. (2): All surfaces foliated by ellipses are not minimal surfaces. (3): CMC surfaces foliated by ellipses are developable surfaces. (4): CMC surfaces foliated by ellipses are translation surfaces generated by a straight line and plane curve.

Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints

  • Liu, Xinrong;Liu, Yongquan;Lu, Yuming;Kou, Miaomiao
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.407-423
    • /
    • 2020
  • The pre-peak cyclic shear mechanism of two-order asperity degradation of rock joints in the direct shear tests with static constant normal loads (CNL) are investigated using experimental and numerical methods. The laboratory testing rock specimens contains the idealized and regular two-order triangular-shaped asperities, which represent the specific geometrical conditions of natural and irregular waviness and unevenness of rock joint surfaces, in the pre-peak cyclic shear tests. Three different shear failure patterns of two-order triangular-shaped rock joints can be found in the experiments at constant horizontal shear velocity and various static constant normal loads in the direct and pre-peak cyclic shear tests. The discrete element method is adopted to simulate the pre-peak shear failure behaviors of rock joints with two-order triangular-shaped asperities. The rock joint interfaces are simulated using a modified smooth joint model, where microscopic scale slip surfaces are applied at contacts between discrete particles in the upper and lower rock blocks. Comparing the discrete numerical results with the experimental results, the microscopic bond particle model parameters are calibrated. Effects of cyclic shear loading amplitude, static constant normal loads and initial waviness asperity angles on the pre-peak cyclic shear failure behaviors of triangular-shaped rock joints are also numerically investigated.

MINIMAL DEL PEZZO SURFACES OF DEGREE 2 OVER FINITE FIELDS

  • Trepalin, Andrey
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1779-1801
    • /
    • 2017
  • Let X be a minimal del Pezzo surface of degree 2 over a finite field ${\mathbb{F}}_q$. The image ${\Gamma}$ of the Galois group Gal(${\bar{\mathbb{F}}}_q/{\mathbb{F}}_q$) in the group Aut($Pic({\bar{X}})$) is a cyclic subgroup of the Weyl group W($E_7$). There are 60 conjugacy classes of cyclic subgroups in W($E_7$) and 18 of them correspond to minimal del Pezzo surfaces. In this paper we study which possibilities of these subgroups for minimal del Pezzo surfaces of degree 2 can be achieved for given q.

Electrocatalysis of Oxygen Reduction by Cu-containing Polymer Films on Glassy Carbon Electrodes

  • Kim, Jong-Won;Gewirth, Andrew A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1322-1328
    • /
    • 2007
  • The catalytic activity of poly[(2,2'-bipyridine)copper(II)-μ4-oxalato] coated on a glassy carbon electrode (GCE) for O2 electroreduction is examined using cyclic voltammetry and rotating disk electrode techniques. The cyclic voltammograms show that O2 is electroreduced on pBpCuOx-coated GCE surfaces at a peak potential of ? 0.25 V in pH 4.7 acetate buffer media. The electroreduction of O2 on pBpCuOx-coated GCE occurs at 450 mV more positive potential than that found at a bare GCE. The catalytic activity originates from Cu(II) coordinated by bipyridine in the complexes and the polymer type Cu-complex films exhibit an enhanced stability compared to monomeric Cu-complexes during the O2 electroreduction. The rotating disk electrode measurements reveal that the electroreduction of O2 on pBpCuOx-coated GCE is a four-electron process. Kinetic parameters for O2 reduction on pBpCuOx-coated GCE are obtained from rotating disk experiments and compared with those on bare glassy carbon electrode surfaces.

Heterogeneous Electron Transfer at Polyoxometalate-modified Electrode Surfaces

  • Choi, Su-Hee;Seo, Bo-Ra;Kim, Jong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.104-111
    • /
    • 2010
  • The heterogeneous electron transfer at $SiMo_{12}O_{40}^{4-}$ monolayers on GC, HOPG, and Au electrode surfaces are investigated using cyclic voltammetric and electrochemical impedance spectroscopic (EIS) methods. The electron transfer of negatively charged $Fe(CN)_6^{3-}$ species is retarded at $SiMo_{12}O_{40}^{4-}$-modified electrode surfaces, while that of positively charged $Ru(NH_3)_6^{3+}$species is accelerated at the modified surfaces. This is due to the electrostatic interactions between $SiMo_{12}O_{40}^{4-}$ layers on surfaces and charged redox species. The electron transfer kinetics of a neutral redox species, 1,1‘-ferrocenedimethanol (FDM), is not affected by the modification of electrode surfaces with $SiMo_{12}O_{40}^{4-}$, indicating the $SiMo_{12}O_{40}^{4-}$ monolayers do not impart barriers to electron transfer of neutral redox species. This is different from the case of thiolate SAMs which always add barriers to electron transfer. The effect of $SiMo_{12}O_{40}^{4-}$ layers on the electron transfer of charged redox species is dependent on the kind of electrodes, where HOPG surfaces exhibit marked effects. Possible mechanisms responsible for different electron transfer behaviors at $SiMo_{12}O_{40}^{4-}$ layers are proposed.

AUTOMORPHISMS OF K3 SURFACES WITH PICARD NUMBER TWO

  • Kwangwoo Lee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1427-1437
    • /
    • 2023
  • It is known that the automorphism group of a K3 surface with Picard number two is either an infinite cyclic group or an infinite dihedral group when it is infinite. In this paper, we study the generators of such automorphism groups. We use the eigenvector corresponding to the spectral radius of an automorphism of infinite order to determine the generators.

Development of an AFM-Based System for Nano In-Process Measurement of Defects on Machined Surfaces (가공면미세결함의 나노 인프로세스 측정을 위한 AFM시스템의 개발)

  • Gwon, Hyeon-Gyu;Choe, Seong-Dae;Park, Mu-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.537-543
    • /
    • 2002
  • This paper examines a new in-process measurement system for the measurement of micro-defects on the surfaces of brittle materials by using the AFM (Atomic Force Microscopy). A new AFM scanning stage that can also perform nano-scale bending of the sample was developed by adding a bending unit to a commercially available AFM scanner. The bending unit consists of a PZT actuator and sample holder, and can perform static and cyclic three-point bending. The true bending displacement of the bending unit is approximately 1.8mm when 80 volts are applied to the PZT actuator. The frequency response of the bending unit and the stress on the sample were also analyzed, both theoretically and experimentally. Potential surface defects of the sample were successfully detected by this measurement system. It was confirmed that the number of micro-defects on a scratched surface increases when the surface is subjected to a cyclic bending load.

Application of Fractal Geometry to Interfacial Electrochemistry - I. Diffusion Kinetics at Fractal Electrodes

  • Shin Heon-Cheol;Pyun Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.1
    • /
    • pp.21-25
    • /
    • 2001
  • This article is concerned with the application of the fractal geometry to interfacial electrochemistry. Especially, we dealt with diffusion kinetics at the fractal electrodes. This article first explained the basic concepts of the Sacral geometry which has proven to be fruitful for modelling rough and irregular surfaces. Finally this article examined the electrochemical responses to various signals under diffusion-limited reactions during diffusion towards the fractal interfaces: The generalised forms, including the fractal dimension of the electrode surfaces, of Cottrell, Sand and Randles-Sevcik equations were theoretically derived and explained in chronoamperomety, chronopotentiometry and linear sweep/cyclic voltammetry, respectively.

Influence of Hold Time and Stress Ratio on Cyclic Creep Properties Under Controlled Tension Loading Cycles of Grade 91 Steel

  • Kim, Woo-Gon;Park, Jae-Young;Ekaputra, I Made Wicaksana;Kim, Seon-Jin;Jang, Jinsung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.581-591
    • /
    • 2017
  • Influences of hold time and stress ratio on cyclic creep properties of Grade 91 steel were systemically investigated using a wide range of cyclic creep tests, which were performed with hold times (HTs) of 1 minute, 3 minutes, 5 minutes, 10 minutes, 20 minutes, and 30 minutes and stress ratios (R) of 0.5, 0.8, 0.85, 0.90, and 0.95 under tension loading cycles at $600^{\circ}C$. Under the influence of HT, the rupture time increased to HT = 5 minutes at R = 0.90 and R = 0.95, but there was no influence at R = 0.50, 0.80, and 0.85. The creep rate was constant regardless of an increase in the HT, except for the case of HT = 5 minutes at R = 0.90 and R = 0.95. Under the influence of stress ratio, the rupture time increased with an increase in the stress ratio, but the creep rate decreased. The cyclic creep led to a reduction in the rupture time and an acceleration in the creep rate compared with the case of monotonic creep. Cyclic creep was found to depend dominantly on the stress ratio rather than on the HT. Fracture surfaces displayed transgranular fractures resulting from microvoid coalescence, and the amount of microvoids increased with an increase in the stress ratio. Enhanced coarsening of the precipitates in the cyclic creep test specimens was found under all conditions.