• Title/Summary/Keyword: e-Fuel

Search Result 835, Processing Time 0.027 seconds

Study on Lab-scale Production of Simulated e-Gasoline and Analysis of Spray Characteristics (모사 합성 가솔린 제조 및 분무 특성 분석 연구)

  • Jeonghyun Park;Naeun Choi;Suhan Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.176-183
    • /
    • 2023
  • Many countries are striving to reduce carbon emissions with the goal of net zero by 2050. Accordingly, vehicles are rapidly being electrified to reduce greenhouse gases in the transportation sector. However, many organizations predict that internal combustion engines of LDV (light-duty vehicle) will exist even in 2050, and it is difficult to electrify aircraft and large ships in a short time. Therefore, synthetic fuel (i.e., e-Fuel) that can reduce carbon emissions and replace existing fossil fuels is in the spotlight. The e-Fuel refers to a fuel synthesized by using carbon obtained through various carbon capture technologies and green hydrogen produced by eco-friendly renewable energy. The purpose of this study is to compare and analyze the injection and spray characteristics of the simulated e-Gasoline. We mixed the hydrocarbon fuel components according to the composition ratio of the synthetic fuel produced based on the FT(Fischer-Tropsch) process. As a result of injection rate measurement, simulated e-Gasoline showed no significant difference in injection delay and injection period compared to standard gasoline. However, due to the low vapor pressure of the simulated e-Gasoline, the spray tip penetration (STP) was lower, and the size of spray droplets was larger than that of traditional gasoline.

Impact of thermal and chemical treatment on the mechanical properties of E110 and E110G cladding tubes

  • Kiraly, M.;Hozer, Z.;Horvath, M.;Novotny, T.;Perez-Fero, E.;Ver, N.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.518-525
    • /
    • 2019
  • The mechanical and corrosion behavior of the Russian zirconium fuel cladding alloy E110, predominantly used in VVERs, has been investigated for many decades. The recent commercialization of a new, optimized E110 alloy, produced on a sponge zirconium basis, gave the opportunity to compare the mechanical properties of the old and the new E110 fuel claddings. Axial and tangential tensile test experiments were performed with samples from both claddings in the MTA EK. Due to the anisotropy of the cladding tubes, the axial tensile strength was 10-15% higher than the tangential (measured by ring tensile tests). The tensile strength of the new E110G alloy was 11% higher than that of the E110 cladding at room temperature. Some samples underwent chemical treatment - slight oxidation in steam or hydrogenation - or heat treatment - in argon atmosphere at temperatures between 600 and $1000^{\circ}C$. The heat treatment during the oxidation had more significant effect on the tensile strength of the claddings than the oxidation itself, which lowered the tensile strength as the thickness of the metal decreased. The hydrogenation of the cladding samples slightly lowered the tensile strength and the samples but they remained ductile even at room temperature.

A Comparative Study on the Injection Rate Characteristics of Conventional and F-T Synthetic Gasoline Under Various Fuel Temperatures (다양한 연료온도 조건에 있어서의 기존 가솔린과 F-T합성 가솔린의 분사율 특성 비교 연구)

  • Jihyun Son;Gyuhan Bae;Seoksu Moon
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.143-149
    • /
    • 2023
  • Amidst the drive towards carbon neutrality, interest in renewable synthetic e-fuels is rising rapidly. These fuels, generated through the synthesis of atmospheric carbon and green hydrogen, offer a sustainable solution, showing advantages like high energy density and compatibility with existing infrastructure. The physical properties of e-fuels can be different from those of conventional gasoline based on manufacturing methods, which requires investigations into how the physical properties of e-fuels affect the fuel injection characteristics. This study performs a comparative analysis between conventional and Fischer-Tropsch (F-T) synthetic gasoline (e-gasoline) across various fuel temperatures, including the cold start condition. The fuel properties of F-T synthetic and conventional gasoline are analyzed using a gas chromatography-mass spectrometry technique and the injection rates are measured using a Bosch-tube injection rate meter. The F-T synthetic gasoline exhibited higher density and kinematic viscosity, but lower vapor pressure compared to the conventional gasoline. Both fuels showed an increase in injection rate as the fuel temperature decreased. The F-T synthetic gasoline showed higher injection rates compared to conventional gasoline regardless of the fuel temperature.

A Study on the Estimation of Air Pollutants Emission Factors in Electric Power Plants (화력발전소의 대기오염물질 배출계수 산정 연구)

  • 김대곤;엄윤성;홍지형;이석조;석광설;이대균;이은정;방선애
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.281-290
    • /
    • 2004
  • The main purpose of this study was to characterize the air pollutants emission factors in electric power plant (EPP) using fossil fuels. The electric power plant is a major air pollution source, thus knowing the emission characteristics of electric power plant is very important to develop a control strategy. The major air pollutants of concern from EPP slacks are particulate matter (PM), sulfur oxides (SOx), nitrogen oxides (NOx), carbon monoxide (CO) and heavy metals. Throughout the study, the following results are estimated - PM : 8.671E-05 ∼ 8.724E+01 PM emission (kg) per fuel burned (ton) - SOx : 4.149E-04∼7.877E+01 SOx emission (kg) per fuel burned (ton) - NOx 1.578E-02∼9.857E+00 NOx emission (kg) per fuel burned (ton) - CO : 3.800E-04∼1.291E+00 CO emission (kg) per fuel burned (ton) - Hg : 1.220E+01∼3.108E+02 Hg emission (mg) per fuel burned(ton) From the statistical analysis by Wilcoxon signed ranks test between the emission factors of ours and U.S. EPA's, we can yielded that : p 〉0.05.

Preliminary study and development of $kW_e$-class liquid fuel based SOFC system (액상 연료 용 $kW_e$급 SOFC 시스템 사전 연구 및 개발)

  • Yoon, Sang-Ho;Kim, Sun-Young;Bae, Joong-Myeon;Baek, Seung-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.21-24
    • /
    • 2008
  • We have developed a $kW_e$ class liquid fuel based solid oxide fuel cell (SOFC) system. Our final target is to develop the 1 $kW_e$ diesel based SOFC system for residential power generator(RPG). In this study, we present the conceptual design of SOFC system. System is composed of hot-box and cold-box. Planar typed SOFC stack, heat exchanger, combustor for stack tail gas, and fuel processor, such as fuel reformer and desulfurizer, are contained in the hot-box. And several balance of plants(BOP), such as fuel suppliers and controller, are contained in the cold-box. Before the SOFC system fabrication, we have already operated the selfsustaining fuel processor, and heat exchange of all heat-related components is simulated using ASPEN HYSYS, because heat maintenance and management in hot-box are important for stable operation of SOFC system. The self-sustained fuel processor was successfully operated for about 250 hours, and heat exchange is enough to operate the SOFC system.

  • PDF

Hydrogen and E-Fuel Production via Thermo-chemical Water Splitting Using Solar Energy (국제 공동 연구를 통한 태양에너지 활용 열화학 물분해 그린 수소 생산 연구 및 E-fuel 생산 연구 동향 보고)

  • Hyun-Seok Cho
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.110-115
    • /
    • 2024
  • Global sustainable energy needs and carbon neutrality goals make hydrogen a key future energy source. South Korea and Japan lead with proactive hydrogen policies, including South Korea's Hydrogen Law and Japan's strategy updates aiming for a hydrogen-centric society by 2050. A notable advance is the solar thermal chemical water-splitting cycle for green hydrogen production, spotlighted by Korea Institute of Energy Research (KIER) and Niigata University's joint initiative. This method uses solar energy to split water into hydrogen and oxygen, offering a carbon-neutral hydrogen production route. The study focuses on international collaboration in solar energy for thermochemical water-splitting and E-fuel production, highlighting breakthroughs in catalyst and reactor design to enhance solar thermal technology's commercial viability for sustainable fuel production. Collaborations, like ARENA in Australia, target global carbon emission reduction and energy system sustainability, contributing to a cleaner, sustainable energy future.

An Experimental Study on Characteristics of Engine Oil Diluted by a Bio-Alcohol Mixture Fuel (바이오알코올 혼합연료의 엔진오일 희석특성에 대한 실험적 연구)

  • Kim, HyunJun;Lee, HoKil;Oh, SeDoo;Kim, Shin
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.183-188
    • /
    • 2016
  • Engine oil plays an important role in the mechanical lubrication and cooling of a vehicle engine. Recently, engine development has focused on the adoption of gasoline direct injection (GDI) and turbocharging methodology to achieve high-power and high-speed performance. However, oil dilution is a problem for GDI engines. Oil dilution occurs owing to high-pressure fuel injection into the combustion chamber when the engine is cold. The chemical components of engine oil are currently developed to accommodate gasoline fuel; however, bio-alcohol mixtures have become a recent trend in fuel development. Bio-alcohol fuels are alternatives to fossil fuels that can reduce vehicle emissions levels and greenhouse gas pollution. Therefore, the chemical components of engine oil should be improved to accommodate bio-alcohol fuels. This study employs a 2.0 L turbo-gas direct injection (T-GDI) engine in an experiment that dilutes oil with fuel. The experiment utilizes a variety of fuels, including sub-octane gasoline fuel (E0) and a bio-alcohol fuel mixture (Ethanol E3~E7). The results show that the lowest amount of oil dilution occurs when using E3 fuel. Analyzing the diluted engine oil by measuring density and moisture with respect to kinematic viscosity shows that the lowest values of these parameters occur when testing E3 fuel. The reason is confirmed to influence the vapor pressure of the low concentration bio-alcohol-fuel mixture.

Lubrication Characteristics in Fuel Injection Pump with Variation of Fuel Oils (연료 변경에 의한 연료분사펌프의 윤활 특성)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.245-250
    • /
    • 2015
  • This study investigates the lubrication characteristics of fuel injection pumps with reference to different fuel oils. Medium-speed diesel engines use fuel oils with various viscosities, such as heavy fuel oil (HFO, which is a high-viscosity fuel oil) and light diesel oil (LDO, which is a low-viscosity fuel oil). When fuel oil with a low viscosity is used, both fuel oil and lubricating oil lubricate the system. Thus, the lubrication of the fuel injection pump is in a multi-viscosity condition when the fuel oil in use changes. We suggest three cases of multi-viscosity models, and divide the fuel injection pump into three lubrication sections: a, the new oil section; b, the mixed oil section; and c, the used oil section. This study compares the lubrication characteristics with variation of the multi-viscosity model, clearance. The volume of Section b does not affect the lubrication characteristics. The lubrication characteristics of the fuel injection pump are poor when high-viscosity fuel oil transfers to low-viscosity fuel oil. This occurs because the viscosity in the new oil section (i.e., Section a) dominates the lubrication characteristics of the fuel injection pump. However, the lubricant oil supply in the used oil section (i.e., Section c) can improve the lubrication characteristics in this condition. Moreover, the clearances of the stem and head significantly influence the lubrication characteristics when the fuel oil changes.

A Study on Diesel Engine NOx and Soot Emission Characteristics using Different Fuel Oils

  • Nam, Jeong-Gil;Kang, Dae-Sun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1080-1088
    • /
    • 2008
  • This paper addresses some concerns faced by the shipping industry nowadays. Initially, the environmental issues were resolved and stricter regulations are now being implemented with regards to the exhaust gas, specifically nitrogen oxides (NOx) and sulfur oxides (SOx), emitted from ships. Secondly, with the increasing and unstable cost of fuel oils in the world market, it has become almost a necessity to explore on a new alternative fuel. Hence, this study was conducted. An experiment was carried-out on a fishing survey vessel with the main engine (M/E) and generator engine (G/E) operated on expensive marine gas oil (MGO). During the experiment, two pre-refinery systems were installed and different fuel oil samples were employed for the M/E and the G/E. Furthermore, the NOx emission and soot concentration were monitored and verified. The results confirmed the compatibility of some fuel oil types to the engines and meeting the emission standards. MDO, MF15 and Bunker A can be used in place of MGO for the engines(M/E, G/E).