• Title/Summary/Keyword: fibroblast-like synoviocyte

Search Result 8, Processing Time 0.021 seconds

In Vitro Effects of Bupivacaine in Cell Proliferation and Matrix Metalloproteinase of Cultured Fibroblast Like Synoviocytes from Rheumatoid Arthritis from Rheumatoid Arthritis (부피바카인이 류마티스 관절염환자의 섬유모세포양 활막세포 배양시 세포증식과 금속단백분해효소 생산에 미치는 실험실적 영향)

  • Han, Tae-Hyung;Jang, Hae-Jin
    • The Korean Journal of Pain
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • Background: Intraarticular local anesthetic injection has been therapeutically applied for pain control in various arthritis patients. However, little physiologic effects of local anesthetics on their tissue were known. This study was conducted to determine its effects on the cell proliferation and matrix metalloproteinases (MMP) production of cultured fibroblast like synoviocytes (FLS) derived from synovial tissues of rheumatoid arthritis patients. Methods: Bupivacaine with varying concentrations 0 (control), 0.1, 0.25, 0.5% was applied to experimental cell groups growing as monolayers in culture plates for varying durations 0 (control), 30, 90, 180 seconds in the presence and absence of interleukin-$1\beta$. Results: No statistical significances were noted in thymidine incorporation between 0, 30, 90 and 180 seconds exposure groups with 0.5% bupivacaine after 1 day and 2 days. Thymidine incorporation between 0, 0.1, 0.25, 0.5% exposure groups 1 day and 2 days after 90 seconds exposure did not show any differences. After exposure to bupivacaine, there were statistically significant increases in MMP-1 (p=0.025) and MMP-3 productions (p=0.000) of FLS in the absence of IL-$1\beta$, but no differences among the groups in the presence of IL-$1\beta$. Conclusion: We concluded that in this short-term in vitro study, bupivacaine does not have injurious effect on cultured rheumatoid arthritic joint tissues. The long-term effect cannot be known from this investigation.

  • PDF

Efficient Gene Delivery through the Human Transferrin Receptor of Fibroblast-like Synoviocytes Stimulated with bFGF: a Potential Target Receptor for Gene Transduction in Rheumatoid Arthritis

  • Kim, Hak-Jae;Joung, In-Sil;Nah, Seong-Su;Lee, Kyu-Hoon;KimKwon, Yun-Hee;Chung, Joo-Ho;Hong, Seung-Jae
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.85-89
    • /
    • 2007
  • Efficient gene delivery to specific tissues, such as inflammatory and cancerous tissues, is currently a major concern in disease treatment. The human transferrin receptor (hTR) has been detected in the synovium and fibroblast-like synoviocytes (FLS), which raises the possibility that expression of hTR is associated with the pathogenesis of rheumatoid arthritis (RA). To investigate whether the hTR is a useful target for gene transduction into the FLS of RA patients, recombinant adenoviruses with wildtype fiber (AdLac) and transferrin peptide-tagged fiber (Tf-AdLac) were used. The hTR expression level in FLS was notably increased by basic fibroblast growth factor (bFGF). Gene transduction to FLS was significantly higher by the hTR-targeted adenovirus than by the AdLac adenovirus, and treatment of the FLS with bFGF resulted in increased gene transduction by Tf-AdLac. Taken together, these data support Tf-AdLac as a new strategy for gene transduction in the treatment of RA patients.

Inhibitory Effects of Gamimahaenggamsuk-tang on RA-related Inflammatory Responses in Cultured Fibroblast-like Synoviocytes

  • Jo Jun;NamGung Uk;Kim Soo-Myung;Kang Tak-Lim;Kim Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1647-1655
    • /
    • 2005
  • Gamimahaenggamsuk-tang (GMHGST) is used for treatment of inflammatory diseases including rheumatoid arthritis (RA). Here, regulatory activity of GMHGST on RA-mediated inflammatory responses was investigated in cultured human fiDroblast-like synoviocytes (FLS), Levels of mRNAs encoding for inflammatory cytokines such as $IL-1{\beta}$, IL-6 and IL-8 and NOS-II enzyme, which had been induced by $TNF-{\alpha}$ and $IL-1{\beta}$ cotreatment, were decreased to the similar levels as those in cells treated with anti-inflammatory agent MTX. mRNA expressions of matrix metalloproteinase-3 (MMP-3) and tissue inhibitor of metalloproteinases (TIMPs) as well as intercellular adhesion molecule (ICAM) were also downregulated by increasing doses of GMHGST in activated FLS. Moreover, GMHGST appeared to protect cells by decreasing NO levels, and inhibited cell proliferation which had been induced by inflammatory stimulation by $TNF-{\alpha}$ and IL-1. These results suggest that GMHGST is effective as an inhibitory agent for regulating inflammatory responses in activated FLS.

MicroRNA-27a Inhibits Cell Migration and Invasion of Fibroblast-Like Synoviocytes by Targeting Follistatin-Like Protein 1 in Rheumatoid Arthritis

  • Shi, Dong-liang;Shi, Gui-rong;Xie, Jing;Du, Xu-zhao;Yang, Hao
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.611-618
    • /
    • 2016
  • Fibroblast-like synoviocytes (FLS) with aberrant expression of microRNA (miRNA) are critical pathogenic regulators in rheumatoid arthritis (RA). Previous studies have found that overexpression or silencing of miRNA can contribute to the development of miRNA-based therapeutics in arthritis models. In this study, we explored the effects of miR-27a on cell migration and invasion in cultured FLS from RA patients. We found that miR-27a was markedly downregulated in the serum, synovial tissue, and FLS of RA patients. Meanwhile, the expression of follistatin-like protein 1 (FSTL1) was upregulated, which suggests that FSTL1 plays a key role in RA development. The results of a Transwell assay showed that miR-27a inhibited FLS migration and invasion. However, miR-27a inhibition promoted the migration and invasion of FLS. In addition, the down-regulated expression of matrix metalloproteinases (MMP2, MMP9, and MMP13) and Rho family proteins (Rac1, Cdc42, and RhoA) was detected after treatment with miR-27a in RA-FLS by quantitative reverse transcription-PCR and western blot analysis. Then, a luciferase reporter assay validated that miR-27a targeted the 3-untranslated region (3'-UTR) of FSTL1. Moreover, miR-27a caused a significant decrease of FSTL1. In addition, the expression of TLR4 and $NF{\kappa}B$ was inhibited by miR-27a but increased by FSTL1 overexpression. In conclusion, we found that miR-27a inhibited cell migration and invasion of RA-FLS by targeting FSTL1 and restraining the $TLR4/NF{\kappa}B$ pathway.

The Morphological Study on Inflammation of Murine Knee Joint by Lipopolysaccharide - Based on the Morphological Changes of Synovial Membrane and Fibrous Membrane - (Lipopolysaccharide로 유발된 생쥐 무릎관절낭 염증에 관한 형태학적 연구 - 윤활관절막과 섬유관절막의 변화를 중심으로 -)

  • Kim, Jin-Tack;Ahn, Sang-Hyun;Choi, Nan-Hee;Chung, Jae-Man;Park, In-Sick;Gang, Yun-Ho;Kim, Ho-Hyun;Lee, Hai-Poong
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.7 no.2
    • /
    • pp.107-120
    • /
    • 1999
  • Synovial joint of BALB/C mice were injeced with Lipopolysaccharide(LPS) were observed to investigate the morphological changes of synovial capsule caused by rheumatoid arthritis(RA). The RA on female Balb/c mice were induced by LPS injection, as dose of $300{\mu}{\ell}/kg$, into synovial cavity of knee joint. And then these specimen were fixed in 10% neutral buffered formalin and were decalcificated in EDTA solution for 4 weeks. The hyperplasia of synovium were appeared in synovial membrane. The filopodia of phagocytic like synoviocyte(type I synoviocyte) projected into synovial cavity and the number of fibroblast like synoviocyte(type II synoviocyte) with well-developed endoplasmic reticulum were increased in synovium. In fibrous membrane, the fibrosis induced by synthesis of collagen fiber were enlarged to all fibrous membrane, and the number of fibroblast were increased. A great number of inflammation component cell as lymphocyte and neutrophil leukocyte were infiltrated around capillary and the degranulate typed mast cell were increased. As results indicated that the hyperplasia of synovium induced by LPS, subsequently to cause the fibrosis, infiltration of imflammation component cell, and increase of degranulated type mast cell as same as symptoms of RA.

  • PDF

Macrophage Migration Inhibitory Factor (MIF) Induced Stromal Cell-derived Factor 1 (SDF-l) Production Via Nuclear Factor KappaB (NF-${\kappa}B$) Signaling in Rheumatoid Arthritis Fibroblast Like Synoviocytes (RA-FLS) (류마티스관절염 활막세포에서 NF-${\kappa}B$ 신호전달을 통한 MIF의 SDF-1 생성 유도)

  • Cho, Mi-La;Park, Mi-Kyung;Kim, Kyoung-Woon;Oh, Hye-Jwa;Lee, Seon-Yeong;Park, Jin-Sil;Heo, Yu-Jung;Ju, Ji-Hyeon;Min, Jun-Ki;Lee, Sang-Heon;Park, Sung-Hwan;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.7 no.1
    • /
    • pp.39-47
    • /
    • 2007
  • Background: Stromal cell-derived factor (SDF)-1 is a potent chemoattractant for activated T cells into the inflamed Rheumatoid arthritis (RA) synovium. To determine the effect of macrophage migration inhibitory factor (MIF) on the production of SDF-1 in the inflamed RA synovium. Methods: The expression of SDF-1 and MIF in RA and Osteoarthritis (OA) synovium was examined by immunohistochemical staining. The SDF-1 was quantified by RT-PCR and ELISA after RA fibroblast like synoviocyte (FLS) were treated with MIF in the presence and absence of inhibitors of intracellular signal molecules. The synovial fluid (SF) and serum levels of MIF and SDF-1 in RA, OA and healthy control were measured by ELISA. Results: Expression of SDF-1 and MIF in synovium was higher in RA patients than in OA patients. The production of SDF-1 was enhanced in RA FLS by MIF stimulation. Such effect of MIF was blocked by the inhibitors of NF-${\kappa}B$. Concentrations of SDF-1 in the serum and SF were higher in RA patients than in OA patients and healthy control. SDF-1 and MIF was overexpressed in RA FLS, and MIF could up-regulate the production of SDF-1 in RA FLS via NF-${\kappa}B$-mediated pathways. Conclusion: These results suggest that an inhibition of interaction between MIF from T cells and SDF-1 of FLS may provide a new therapeutic approach in the treatment of RA.

Expression and Function of Calcineurin in Inflammatory Arthritis (류마티스 관절염에서 칼시뉴린의 발현과 기능)

  • Park, Bo-Hyoung;Yoo, Seung-Ah;Hong, Kyung-Hee;Hyoung, Bok-Jin;Hwang, Yu-Na;Cho, Chul-Soo;Park, Won;Kim, Wan-Uk
    • IMMUNE NETWORK
    • /
    • v.6 no.1
    • /
    • pp.33-42
    • /
    • 2006
  • Background: Calcineurin plays a crucial role in T cell activation, cell growth, apoptosis, and angiogenesis, and its over-expression has been implicated in the pathogenesis of cardiomyopathy and stroke. However, the expression and function of calcineurin in the pathologic lesion of chronic inflammatory diseases, like rheumatoid synovium, remain to be defined. This study was aimed to determine the role of calcineurin in inflammatory arthritis and investigate the expression and function of calcineurin in the rheumatoid synovium and synoviocytes, the actual site of chronic inflammation. Methods: Immuno-histochemical staining using specific antibody to calcineurin was perfomed in the synovium of rheumatoid arthritis (RA). Fibroblast-like synoviocytes (FLS) from RA and osteoarthritis (OA) patients were isolated from RA and OA patients, and cultured with IL-1${\beta}$ and TNF-${\alpha}$ in the presence or absence of cyclosporin A, a calcineurin inhibitor. The calcineurin expression was assessed by phosphatase assay and Western blotting analysis. IL-6, -10, -17, matrix metalloproteinase (MMP)-1, -2, -3, and -9 released into the culture supernatants were measured by ELISA. After transfection with GFP-Cabin 1 gene into synoviocytes, the levels of IL-6 and MMPs were measured by ELISA. Results: Calcineurin was highly expressed in the lining layer of synovium and cultured synoviocytes of RA patients. The elevated calcineurin activity in the rheumatoid synoviocytes was triggered by proin flammatory cytokines such as IL-1${\beta}$ and TNF-${\alpha}$. In contrast, IL-10, an anti-inflammatory cytokine, failed to increase the calcineurin activity. The targeted inhibition of calcineurin by the over-expression of Cabin 1, a natural calcineurin antagonist, inhibited the production of IL-6 and MMP-2 by rheumatoid synoviocytes in a similar manner to the calcineurin inhibitor, cyclosporin A. Conclusion: These data suggest that abnormal activation of calcineurin in the synoviocytes may contribute to the pathogenesis of chronic arthritis, and thus provide a potential target for controlling inflammatory arthritis.

IL-23 P19 Expression Induced by IL-17 and $IL-1{\beta}$ in Rheumatoid Arthritis Synovial Mononuclear Cells (류마티스관절염 환자의 활액 세포에서 IL-17과 $IL-1{\beta}$에 의한 IL-23p19의 발현 증가)

  • Cho, Mi-La;Heo, Yu-Jung;Oh, Hye-Jwa;Kang, Chang-Min;Lee, Seon-Yeong;Hong, Yeon-Sik;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.8 no.1
    • /
    • pp.29-37
    • /
    • 2008
  • Interleukin-23 (IL-23) is a novel pro-inflammatory cytokine which has been implicated to play a pathogenic role in rheumatoid arthritis (RA). This study was undertaken to investigate the IL-23 inductive activity of the proinflammatory cytokine IL-17, $IL-1{\beta}$ and tumor necrosis factor (TNF-${\alpha}$) in RA synovial fluid mononuclear cells (SFMC). Expression of IL-23p19, IL-17, $IL-1{\beta}$ and TNF-${\alpha}$ in joint was examined by immunohistochemistry (IHC) of patients with RA and osteoarthritis (OA). The effects of IL-17 and $IL-1{\beta}$ on expression of IL-23p19 in human SFMC from RA patients were determined by reverse transcriptase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). IL-23p19 was expressed in the RA fibroblast like synoviocyte (FLS), but not from OA FLS. Similar to the protein expression, IL-23p19 mRNA could be detected by RT-PCR in RA SFMC. IL-17 and $IL-1{\beta}$ could induce RA SFMC to produce the IL-23p19. The effects of IL-17 were much stronger than $IL-1{\beta}$ or TNF-${\alpha}$. These responses were observed in a doseresponsive manner. In addition, IL-17 or $IL-1{\beta}$ neutralizing antibody down-regulated the expression of IL-23p19 induced by LPS in RA-SFMC. Our results demonstrate that IL-23p19 is overexpressed in RA synovium and IL-17 and $IL-1{\beta}$ appears to upregulate the expression of IL-23p19 in RA-SFMC.