• Title/Summary/Keyword: floating-sink ratio

Search Result 2, Processing Time 0.018 seconds

Study on the Discrimination of Constitution Using Pulse Wave (맥상파를 이용한 체질 판별방법에 관한 연구)

  • Shin, Sang-Hoon;Kim, Jong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1403-1409
    • /
    • 2008
  • The purpose of this study is to develop the systematic process on the discrimination of Sasang constitution with the pulse diagnosis apparatus. The pulse waves were acquired at the right and the left Guan point with 1420 people who were apparently healthy. In order to minimize the effect of aging on the shape of pulse wave, the age groups of 30s, 40s, and 50s were used. Taeum group was the best to classify, Soyang group was the worst. With the same group size, the sensitivity of Soyang group was increased. Input variables were selected with the consideration of the floating-sink ratio, tests of equality of group means, multiple comparison, multicollinearity, and structure matrix. To increase the sensitivity of Soyang, the variables which could tell the difference between Soyang and Soeum were selected.

The Gravity Separation of Speiss and Limestone Granules Using Vibrating Zirconia Ball Bed (지르코니아볼층 진동을 이용한 스파이스와 석회석 입자의 비중선별)

  • Yoo, Jae Kyoung;Lee, Minji;Kim, Gyeong Hwan;Yoo, Kyoungkeun
    • Resources Recycling
    • /
    • v.29 no.3
    • /
    • pp.36-42
    • /
    • 2020
  • In the present study, gravity separation of speiss (6.74 g/㎤) and limestone (2.7 g/㎤) was investigated using a vibrating 1 mm-zirconia ball (5.6 g/㎤) bed as a medium. The floating ratio and separation efficiency with increasing the number of spiess and limestone granules were examined by changing the vibration frequency from 18 Hz to 26 Hz. During the vibration, the zirconia balls circulate inside the vessel, and the spiess granules sink with the zirconia balls, but limestone granules remain on the surface of the zirconia ball bed. As the number of particles of spiess and limestone granules increased, it was observed that the granules were congested in the path of the granule sinking, so the rate of particle sinking decreased, and that limestone granules overlapping with the spiess granule also sunk. Therefore, the separation efficiency decreases with increasing the number of granules, but when the vibrational frequency increases, there is no more congestion and the separation efficiency increases. When each of the three particles was added, a separation efficiency of 100% was acheived at 22 Hz, which indicates that a dry gravity separation process that does not require a drying process is possible.