• Title/Summary/Keyword: generalized Petersen graph

Search Result 3, Processing Time 0.019 seconds

ALL GENERALIZED PETERSEN GRAPHS ARE UNIT-DISTANCE GRAPHS

  • Zitnik, Arjana;Horvat, Boris;Pisanski, Tomaz
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.475-491
    • /
    • 2012
  • In 1950 a class of generalized Petersen graphs was introduced by Coxeter and around 1970 popularized by Frucht, Graver and Watkins. The family of $I$-graphs mentioned in 1988 by Bouwer et al. represents a slight further albeit important generalization of the renowned Petersen graph. We show that each $I$-graph $I(n,j,k)$ admits a unit-distance representation in the Euclidean plane. This implies that each generalized Petersen graph admits a unit-distance representation in the Euclidean plane. In particular, we show that every $I$-graph $I(n,j,k)$ has an isomorphic $I$-graph that admits a unit-distance representation in the Euclidean plane with a $n$-fold rotational symmetry, with the exception of the families $I(n,j,j)$ and $I(12m,m,5m)$, $m{\geq}1$. We also provide unit-distance representations for these graphs.

ON THE SIGNED TOTAL DOMINATION NUMBER OF GENERALIZED PETERSEN GRAPHS P(n, 2)

  • Li, Wen-Sheng;Xing, Hua-Ming;Sohn, Moo Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.2021-2026
    • /
    • 2013
  • Let G = (V,E) be a graph. A function $f:V{\rightarrow}\{-1,+1\}$ defined on the vertices of G is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. The signed total domination number of G, ${\gamma}^s_t(G)$, is the minimum weight of a signed total dominating function of G. In this paper, we study the signed total domination number of generalized Petersen graphs P(n, 2) and prove that for any integer $n{\geq}6$, ${\gamma}^s_t(P(n,2))=2[\frac{n}{3}]+2t$, where $t{\equiv}n(mod\;3)$ and $0 {\leq}t{\leq}2$.

PAIR DIFFERENCE CORDIAL LABELING OF PETERSEN GRAPHS P(n, k)

  • R. PONRAJ;A. GAYATHRI;S. SOMASUNDARAM
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.1_2
    • /
    • pp.41-53
    • /
    • 2023
  • Let G = (V, E) be a (p, q) graph. Define $${\rho}=\{{\frac{2}{p}},\;{\text{{\qquad} if p is even}}\\{\frac{2}{p-1}},\;{{\text{if p is odd}}$$ and L = {±1, ±2, ±3, … , ±ρ} called the set of labels. Consider a mapping f : V ⟶ L by assigning different labels in L to the different elements of V when p is even and different labels in L to p-1 elements of V and repeating a label for the remaining one vertex when p is odd.The labeling as defined above is said to be a pair difference cordial labeling if for each edge uv of G there exists a labeling |f(u) - f(v)| such that ${\mid}{\Delta}_{f_1}-{\Delta}_{f^c_1}{\mid}{\leq}1$, where ${\Delta}_{f_1}$ and ${\Delta}_{f^c_1}$ respectively denote the number of edges labeled with 1 and number of edges not labeled with 1. A graph G for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate pair difference cordial labeling behaviour of Petersen graphs P(n, k) like P(n, 2), P(n, 3), P(n, 4).