• Title/Summary/Keyword: genetic

Search Result 18,729, Processing Time 0.048 seconds

Genetic counseling in Korean health care system (유전상담의 제도적인 고찰)

  • Kim, Hyon-J.
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Unprecedented amount of genetic information being generated from the result of Human Genome Project (HGP) and advances in genetic research is already forcing changes in the paradigm of health and disease. The ultimate goal of genetic medicine is to use genetic information and technology to develop new ways of treatment or even prevention of the disease on an individual level for 'personalized medicine'. Genetics is play ing an increasingly important role in the diagnosis, monitoring and management of common multifactorial diseases in addition to rare single-gene disorders. While wide range of genetic testing have provided benefits to patients and family, uncertainties surrounding test interpretation, the current lack of available medical options for the diseases, and risks for discrimination and social stigmatization may remain to be resolved. However an increasing number of genetic tests are becoming commercially available, including direct to consumer genetic testing, yet public is often unaw are of their clinical and social implications. The personal nature of information generated by a genetic test, its power to affect major life decisions and family members, and its potential misuse raise important ethical considerations. Therefore appropriate genetic counseling is needed for patient to be informed with the benefits, limitations and risks of genetic tests, prior to informed consent for the tests. Physician also should be familiar with the legal and ethical issues involved in genetic testing to tell patients how w ell a particular genetic risk factor relates with likelihood of disease, and be able to provide appropriate genetic counseling. Genetic counseling become a mandatory requirement as global standard for many genetic testing such as prenatal diagnosis, presymtomatic DNA diagnostic tests and cancer susceptibility gene test for familial cancer syndrome. In oder to meet the challenge of genetic medicine of 21 century in korean health care system, professional education program and certification board for medical genetics specialist including non-MD genetic counselors should be addressed by medical society and regulatory policy of national health insurance reimbursement for genetic counseling to be in place to promote the implementation of clinical genetic service including genetic counseling for proper genetic testing.

  • PDF

Genetic Variation in the Selected Populations of Hovenia dulcis var. koreana Nakai. Based on RAPD Analysis

  • Kim Sea-Hyun;Han Jin-Gyu;Chung Hun-Gwan;Cho Yoon-Jin;Park Hyung-Soon
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.293-299
    • /
    • 2005
  • This study used RAPD markers to assume genetic diversity and variation in selected populations of Hovenia dulcis var. koreana. Ratio of polymorphic RAPD markers were 93.4% in selected populations of Hovenia dulcis Thunb., difference of genetic structure among populations and within populations showed 16.45%, 83.55%, respectively in amount of total genetic variation of 4 populations. Total gene diversity($H_T$) that show genetic diversity appeared 0.313 and coefficient of gene differentiation($G_{ST}$) that compare genetic differentiation of populations appeared 0.1645, analysis of AMOVA for variation among populations and within populations was significantly different (P<0.001). Genetic diversity of whole populations showed that 12.44% difference among population and 87.56% difference within populations. As a result, difference within populations was larger than difference among populations in genetic diversity. Nei's genetic distance and cluster analysis appeared that mean genetic distance among populations was 0.076, thus dividing two main groups and geographic relationship did not show in populations.

  • PDF

Effect of Imported Young Bulls with Higher Genetic Merit on Genetic Progress of Japanese Holstein Population

  • Terawaki, Y.;Shimizu, H.;Fukui, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.416-421
    • /
    • 1997
  • The effect of imported young bulls on the genetic progress was examined in the Holstein dairy cattle population in Japan. The effect of the difference of mean genetic merit between imported and domestic young bulls ("genetic difference") was recognized on the genetic progress of the domestic animals in the early stage of selection. On the other hand, the genetic progress of domestic animals were remarkably influenced by the genetic trend of imported young bulls ("genetic trend") in the later stage. Import of young bulls originated from high genetic level of young bulls originated from high genetic level population improved the genetic progress of domestic population. But, the increase of the immigration ratio of imported young bulls ("immigration ratio") did not influence linearly on the progress of the genetic merit of domestic animals. Even if "immigration ratio" was 100%, the genetic merit of domestic animals could not overcome the one of imported young bulls. In the later stage of selection, the genetic merit of domestic animals ran parallel to those of imported young bulls.

Genetic testing in clinical pediatric practice

  • Yoo, Han Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.3
    • /
    • pp.273-285
    • /
    • 2010
  • Completion of the human genome project has allowed a deeper understanding of molecular pathophysiology and has provided invaluable genomic information for the diagnosis of genetic disorders. Advent of new technologies has lead to an explosion in genetic testing. However, this overwhelming stream of genetic information often misleads physicians and patients into a misguided faith in the power of genetic testing. Moreover, genetic testing raises a number of ethical, legal, and social issues. Diagnostic genetic tests can be divided into three primary but overlapping categories: cytogenetic studies (including routine karyotyping, high-resolution karyotyping, and fluorescent in situ hybridization studies), biochemical tests, and DNA-based diagnostic tests. DNA-based testing has grown rapidly over the past decade and includes preandpostnatal testing for the diagnosis of genetic diseases, testing for carriers of genetic diseases, genetic testing for susceptibility to common non-genetic diseases, and screening for common genetic diseases in a particular population. Theoretically, once a gene's structure, function, and association with a disease are well established, the clinical application of genetic testing should be feasible. However, for routine applications in a clinical setting, such tests must satisfy a number of criteria. These criteria include an acceptable degree of clinical and analytical validity, support of a quality assurance program, possibility of modifying the course of the diagnosed disease with treatment, inclusion of pre-and postnatal genetic counseling, and determination of whether the proposed test satisfies cost-benefit criteria and should replace or complement traditional tests. In the near future, the application of genetic testing to common diseases is expected to expand and will likely be extended to include individual pharmacogenetic assessments.

Direct-to-consumer genetic testing

  • Kim, Jong-Won
    • Genomics & Informatics
    • /
    • v.17 no.3
    • /
    • pp.34.1-34.3
    • /
    • 2019
  • Direct-to-consumer (DTC) genetic testing is a controversial issue although Korean Government is considering to expand DTC genetic testing. Preventing the exaggeration and abusing of DTC genetic testing is an important task considering the early history of DTC genetic testing in Korea. And the DTC genetic testing performance or method has been rarely reported to the scientific and/or medical community and reliability of DTC genetic testing needs to be assessed. Law enforcement needs to improve these issues. Also principle of transparency needs to be applied.

Distributed Genetic Algorithms for the TSP (분산 유전알고리즘의 TSP 적용)

  • 박유석
    • Journal of the Korea Safety Management & Science
    • /
    • v.3 no.3
    • /
    • pp.191-200
    • /
    • 2001
  • Parallel Genetic Algorithms partition the whole population into several sub-populations and search the optimal solution by exchanging the information each others periodically. Distributed Genetic Algorithm, one of Parallel Genetic Algorithms, divides a large population into several sub-populations and executes the traditional Genetic Algorithm on each sub-population independently. And periodically promising individuals selected from sub-populations are migrated by following the migration interval and migration rate to different sub-populations. In this paper, for the Travelling Salesman Problems, we analyze and compare with Distributed Genetic Algorithms using different Genetic Algorithms and using same Genetic Algorithms on each separated sub-population The simulation result shows that using different Genetic Algorithms obtains better results than using same Genetic Algorithms in Distributed Genetic Algorithms. This results look like the property of rapidly searching the approximated optima and keeping the variety of solution make interaction in different Genetic Algorithms.

  • PDF

Evaluation of Genetic Variation and Phylogenetic Relationship among North Indian Cattle Breeds

  • Sharma, Rekha;Pandey, A.K.;Singh, Y.;Prakash, B.;Mishra, B.P.;Kathiravan, P.;Singh, P.K.;Singh, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • In the present study, genetic analyses of diversity and differentiation were performed on four breeds of Indian zebu cattle (Bos indicus). In total, 181 animals belonging to Ponwar, Kherigarh, Gangatiri and Kenkatha breeds were genotyped for 20 cattle specific microsatellite markers. Mean number of alleles observed per locus (MNA) varied between 5.75 (Kenkatha) to 6.05 (Kherigarh). The observed and expected heterozygosity for the breeds varied from 0.48 (Gangatiri) to 0.58 (Kherigarh) and 0.65 (Kenkatha) to 0.70 (Kherigarh), respectively. $F_{IS}$ estimates of all the breeds indicated significant deficit of heterozygotes being 28.8%, 25.9%, 17.7% and 17.7% for Gangatiri, Ponwar, Kherigarh and Kenkatha, respectively. The $F_{ST}$ estimates demonstrated that 10.6% was the average genetic differentiation among the breeds. Nei's genetic distance DA and Cavalli- Sforza and Edwards Chord distance ($D_C$) and the phylogenetic tree constructed from these reflected the close genetic relationship of Gangatiri and Kenkatha, whereas Ponwar appears to be more distant.

Population Structure and Genetic Bottleneck Analysis of Ankleshwar Poultry Breed by Microsatellite Markers

  • Pandey, A.K.;Kumar, Dinesh;Sharma, Rekha;Sharma, Uma;Vijh, R.K.;Ahlawat, S.P.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.915-921
    • /
    • 2005
  • Genetic variation at 25 microsatellite loci, population structure, and genetic bottleneck hypothesis were examined for Ankleshwar poultry population found in Gujrat, India. The estimates of genetic variability such as effective number of alleles and gene diversities revealed substantial genetic variation frequently displayed by microsatellite markers. The average polymorphism across the studied loci and the expected gene diversity in the population were 6.44 and 0.670${\pm}$0.144, respectively. The population was observed to be significantly differentiated into different groups, and showed fairly high level of inbreeding (f = 0.240${\pm}$0.052) and global heterozygote deficit. The bottleneck analysis indicated the absence of genetic bottleneck in the past. The study revealed that the Ankleshwar poultry breed needs appropriate genetic management for its conservation and improvement. The information generated in this study may further be utilized for studying differentiation and relationships among different Indian poultry breeds.

Genetic Structure and Differentiation of Three Indian Goat Breeds

  • Dixit, S.P.;Verma, N.K.;Aggarwal, R.A.K.;Kumar, Sandeep;Chander, Ramesh;Vyas, M.K.;Singh, K.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1234-1240
    • /
    • 2009
  • Gene flow, genetic structure and differentiation of Kutchi, Mehsana and Sirohi breeds of goat from North-Western India were evaluated based on 25 microsatellite markers so as to support breed conservation and improvement decisions. The microsatellite genotyping was carried out using an automated DNA sequencer. The gene diversity across the studied loci for the Kutchi breed varied from 0.57 (ILST 065) to 0.93 (OarFCB 304, OMHC 1, ILSTS 058) with an overall mean of 0.79${\pm}$0.02. The corresponding values for Mehsana and Sirohi breeds were 0.16 (ILST 008) to 0.93 (OMHC 1, ILSTS 058) with an average of 0.76${\pm}$0.04, and 0.50 (ILSTS 029) to 0.94 (ILSTS 058) with an average of 0.78${\pm}$0.02, respectively. The Mehsana breed had lowest gene diversity among the 3 breeds studied. All the populations showed an overall significant heterozygote deficit ($F_{is}$). The Fis values were 0.26, 0.14 and 0.36 for Kutchi, Mehsana and Sirohi goat breeds, respectively. Kutchi and Mehsana were more differentiated (16%) followed by Mehsana and Sirohi (13%).The measures of standard genetic distance between pairs of breeds indicated that the lowest genetic distance was between Kutchi and Sirohi breeds (0.73) and the largest genetic distance was between Mehsana and Kutchi (1.0) followed by Sirohi and Mehsana (0.75) breeds. Mehsana and Kutchi are distinct breeds and this was revealed by the estimated genetic distance between them. All measures of genetic variation revealed substantial genetic variation in each of the populations studied, thereby showing good scope for their further improvement.