• Title/Summary/Keyword: goodness of fit test

Search Result 427, Processing Time 0.032 seconds

Data-Driven Smooth Goodness of Fit Test by Nonparametric Function Estimation

  • Kim, Jongtae
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.811-816
    • /
    • 2000
  • The purpose of this paper is to study of data-driven smoothing goodness of it test, when the hypothesis is complete. The smoothing goodness of fit test statistic by nonparametric function estimation techniques is proposed in this paper. The results of simulation studies for he powers of show that the proposed test statistic compared well to other.

  • PDF

Goodness-of-fit tests for a proportional odds model

  • Lee, Hyun Yung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1465-1475
    • /
    • 2013
  • The chi-square type test statistic is the most commonly used test in terms of measuring testing goodness-of-fit for multinomial logistic regression model, which has its grouped data (binomial data) and ungrouped (binary) data classified by a covariate pattern. Chi-square type statistic is not a satisfactory gauge, however, because the ungrouped Pearson chi-square statistic does not adhere well to the chi-square statistic and the ungrouped Pearson chi-square statistic is also not a satisfactory form of measurement in itself. Currently, goodness-of-fit in the ordinal setting is often assessed using the Pearson chi-square statistic and deviance tests. These tests involve creating a contingency table in which rows consist of all possible cross-classifications of the model covariates, and columns consist of the levels of the ordinal response. I examined goodness-of-fit tests for a proportional odds logistic regression model-the most commonly used regression model for an ordinal response variable. Using a simulation study, I investigated the distribution and power properties of this test and compared these with those of three other goodness-of-fit tests. The new test had lower power than the existing tests; however, it was able to detect a greater number of the different types of lack of fit considered in this study. I illustrated the ability of the tests to detect lack of fit using a study of aftercare decisions for psychiatrically hospitalized adolescents.

ENTROPY-BASED GOODNESS OF FIT TEST FOR A COMPOSITE HYPOTHESIS

  • Lee, Sangyeol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.351-363
    • /
    • 2016
  • In this paper, we consider the entropy-based goodness of fit test (Vasicek's test) for a composite hypothesis. The test measures the discrepancy between the nonparametric entropy estimate and the parametric entropy estimate obtained from an assumed parametric family of distributions. It is shown that the proposed test is asymptotically normal under regularity conditions, but is affected by parameter estimates. As a remedy, a bootstrap version of Vasicek's test is proposed. Simulation results are provided for illustration.

On the Goodness-of-fit Test in Regression Using the Difference Between Nonparametric and Parametric Fits

  • Hong, Chang-Kon;Joo, Jae-Seon
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.1-14
    • /
    • 2001
  • This paper discusses choosing the weight function of the Hardle and Mammen statistic in nonparametric goodness-of-fit test for regression curve. For this purpose, we modify the Hardle and Mammen statistic and derive its asymptotic distribution. Some results on the test statistic from the wild bootstrapped sample are also obtained. Through Monte Carlo experiment, we check the validity of these results. Finally, we study the powers of the test and compare with those of the Hardle and Mammen test through the simulation.

  • PDF

ON THE GOODNESS OF FIT TEST FOR DISCRETELY OBSERVED SAMPLE FROM DIFFUSION PROCESSES: DIVERGENCE MEASURE APPROACH

  • Lee, Sang-Yeol
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1137-1146
    • /
    • 2010
  • In this paper, we study the divergence based goodness of fit test for partially observed sample from diffusion processes. In order to derive the limiting distribution of the test, we study the asymptotic behavior of the residual empirical process based on the observed sample. It is shown that the residual empirical process converges weakly to a Brownian bridge and the associated phi-divergence test has a chi-square limiting null distribution.

Goodness-of-fit Test for Rayleigh Distribution

  • Sultan, K.S.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.1
    • /
    • pp.41-51
    • /
    • 2007
  • In this paper, we use the moments of order statistics derived by Lieblein (1955) to develop the correlation goodness-of-fit test for the Rayleigh distribution. In such we simulate the percentage points of the test statistics for the one-parameter and two-parameter cases. In addition, we calculate the power of the proposed tests based on some alterative distributions. Finally, we apply the procedures developed in the paper to some real data.

  • PDF

Minimum Hellinger Distance Bsed Goodness-of-fit Tests in Normal Models: Empirical Approach

  • Dong Bin Jeong
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.3
    • /
    • pp.967-976
    • /
    • 1999
  • In this paper we study the Hellinger distance based goodness-of-fit tests that are analogs of likelihood ratio tests. The minimum Hellinger distance estimator (MHDE) in normal models provides an excellent robust alternative to the usual maximum likelihood estimator. Our simulation results show that the Hellinger deviance test (Simpson 1989) based goodness-of-fit test is robust when data contain outliers. The proposed hellinger deviance test(Simpson 1989) is a more direcct method for obtaining robust inferences than an automated outlier screen method used before the likelihood ratio test data analysis.

  • PDF

Comparison of Powers in Goodness of Fit Test of Quadratic Measurement Error Model

  • Moon, Myung-Sang
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.229-240
    • /
    • 2002
  • Whether to use linear or quadratic model in the analysis of regression data is one of the important problems in classical regression model and measurement error model (MEM). In MEM, four goodness of fit test statistics are available In solving that problem. Two are from the derivation of estimators of quadratic MEM, and one is from that of the general $k^{th}$-order polynomial MEM. The fourth one is derived as a variation of goodness of fit test statistic used in linear MEM. The purpose of this paper is to find the most powerful test statistic among them through the small-scale simulation.

A Goodness-of-Fit Test for Multivariate Normal Distribution Using Modified Squared Distance

  • Yim, Mi-Hong;Park, Hyun-Jung;Kim, Joo-Han
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.607-617
    • /
    • 2012
  • The goodness-of-fit test for multivariate normal distribution is important because most multivariate statistical methods are based on the assumption of multivariate normality. We propose goodness-of-fit test statistics for multivariate normality based on the modified squared distance. The empirical percentage points of the null distribution of the proposed statistics are presented via numerical simulations. We compare performance of several test statistics through a Monte Carlo simulation.

A Goodness of Fit Tests Based on the Partial Kullback-Leibler Information with the Type II Censored Data

  • Park, Sang-Un;Lim, Jong-Gun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.233-238
    • /
    • 2003
  • Goodness of fit test statistics based on the information discrepancy have been shown to perform very well (Vasicek 1976, Dudewicz and van der Meulen 1981, Chandra et al 1982, Gohkale 1983, Arizona and Ohta 1989, Ebrahimi et al 1992, etc). Although the test is well defined for the non-censored case, censored case has not been discussed in the literature. Therefore we consider a goodness of fit test based on the partial Kullback-Leibler(KL) information with the type II censored data. We derive the partial KL information of the null distribution function and a nonparametric distribution function, and establish a goodness of fit test statistic. We consider the exponential and normal distributions and made Monte Calro simulations to compare the test statistics with some existing tests.

  • PDF