• Title/Summary/Keyword: ground boundary

Search Result 525, Processing Time 0.022 seconds

Turbulent Flow Simulations on 2-Dimensional Ground Effect Part II. Study on the Effects of Ground Boundary Conditions (2차원 지면효과에 대한 난류 유동장 해석 Part II. 지면경계 조건의 영향에 대한 연구)

  • Kim, Yoon-Sik;Lee, Jae-Eun;Kim, Eu-Gene;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.670-676
    • /
    • 2007
  • A comparative study on ground boundary conditions for the airfoil in ground effect has been carried out. The objective of the present study is to clarify effects of the ground boundary conditions so that it will be helpful to analyse results of wind tunnel tests using the fixed ground board or the image method. A low Mach number preconditioned Navier-Stokes solver using the overlap grid method has been applied. It has been turned out that results with the symmetric boundary condition are almost the same to those with the moving boundary condition. Results with the fixed ground boundary show discrepancy to those with the moving boundary condition when flow separation on the ground board takes place.

A Study on the Development of the Ground Boundary Points Record Focusing on Registration and Management (지상경계점등록부 등록 및 관리 개선방안에 관한 연구)

  • Park, Jung-Hee;Jang, Bong-Bae;Choi, Yun-Su
    • Journal of Cadastre & Land InformatiX
    • /
    • v.44 no.2
    • /
    • pp.1-23
    • /
    • 2014
  • South Korea makes and manages the ground boundary points record to efficient menage for the installed ground boundary points from cadastral survey with established the Land survey Channel investigation and Cadastre law Section 65 on 17 July 2013. However, this system's negative perception is spreading across the country because of the excessive business process time and inadequate availability. Consequently, this study has analyzed implementation problems of the ground boundary points record. Moreover reasonable development plans have been proposed through the investigation of the advanced foreign cases and interview of the international cadastral experts. Based on this study, it looks forward to improvement more enhanced reliability of the Korean cadastral system.

An iterative boundary element method for a wing-in-ground effect

  • Kinaci, Omer Kemal
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.282-296
    • /
    • 2014
  • In this paper, an iterative boundary element method (IBEM) was proposed to solve for a wing-in-ground (WIG) effect. IBEM is a fast and accurate method used in many different fields of engineering and in this work; it is applied to a fluid flow problem assessing a wing in ground proximity. The theory and the developed code are validated first with other methods and the obtained results with the proposed method are found to be encouraging. Then, time consumptions of the direct and iterative methods were contrasted to evaluate the efficiency of IBEM. It is found out that IBEM dominates direct BEM in terms of time consumption in all trials. The iterative method seems very useful for quick assessment of a wing in ground proximity condition. After all, a NACA6409 wing section in ground vicinity is solved with IBEM to evaluate the WIG effect.

Reliability Estimation of the Buried Pipelines for the Ground Subsidence (지반침하에 대한 매설배관의 건전성 평가)

  • 이억섭;김의상;김동혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1557-1560
    • /
    • 2003
  • This paper presents the effect of varying boundary conditions such as ground subsidence on failure prediction of buried pipelines. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with three cases of ground subsidence. We estimate the distribution of stresses imposed on the buried pipelines by varying boundary conditions and calculate the probability of pipelines with von-Mises failure criterion. The effects of random variables such as pipe diameter, internal pressure, temperature, settlement width, load for unit length of pipelines, material yield stress and thickness of pipeline on the failure probability of the buried pipelines are also systematically studied by using a failure probability model for the pipeline crossing a ground subsidence region.

  • PDF

Numerical Study of Thermo-hydraulic Boundary Condition for Surface Energy Balance (지표면 열평형의 열-수리적 경계조건에 대한 수치해석)

  • Shin, Hosung;Jeoung, Jae-Hyeung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.25-31
    • /
    • 2021
  • Boundary conditions for thermal-hydraulic problems of soils play an essential role in the numerical accuracy. This study presents a boundary condition considering the thermo-hydraulic interaction between the ground and the atmosphere. Ground surface energy balance consists of solar radiation, ground radiation, wind convection, latent heat from water evaporation, and heat conduction to the ground. Equations for each heat flux are presented, and numerical analyses are performed in conjunction with the FEM program for the thermal-hydraulic phenomenon of unsaturated soils. Numerical results using the weather data at the Ulsan Meteorological Observatory are similar to the measured surface temperature. Latent heat caused by water evaporation during the daytime lowers the surface temperature of the bare soil, and a thermal equilibrium is reached at nighttime when the effect of the ground condition is significantly reduced. The temperature change of the surface ground is diminished at the deeper ground due to its thermal diffusion. Numerical analysis where the surface ground temperature is the primary concern requires considering the thermo-hydraulic interaction between the ground and the atmosphere.

Dynamic behavior of submerged floating tunnels at the shore connection considering the use of flexible joints

  • Seok-Jun Kang;Minhyeong Lee;Jun-Beom An;Dong-Hyuk Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.101-112
    • /
    • 2023
  • When a submerged floating tunnel is connected to the ground, there is a risk of stress concentration at the shore connection owing to the displacement imbalance caused by low confinement pressures in water and high confinement pressures in the ground. Here, the effects of the boundary condition and stiffness of the joints installed at the shore connection on the behaviors of a submerged floating tunnel and its shore connection were analyzed using a numerical method. The analysis results obtained with fixed and ground boundaries were similar due to the high stiffness of the ground boundary. However, the stability of the shore connection was found to be improved with the ground boundary as a small displacement was allowed at the boundary. The effect of the joint stiffness was evaluated by investigating the dynamic behavior of the submerged floating tunnel, the magnitude of the load acting on the bored tunnel, and the stress distribution at the shore connection. A lower joint stiffness was found to correspond to more effective relief of the stress concentration at the shore connection. However, it was confirmed that joints with low stiffness also increase the submerged floating tunnel displacement and decrease the frequency of the dynamic behavior, causing a risk of increased resonance when wave loads with low frequency are applied. Therefore, it is necessary to derive the optimal joint stiffness that can achieve both stress concentration relief and resonance prevention during the design of shore connections to secure their dynamic stability.

Numerical Simulation of Turbulent Flow around 2-D Airfoils in Ground Effect (CFD에 의한 2차원 지면 효과익 주위의 난류유동계산)

  • H.H. Chun;R.H. Chang;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.28-40
    • /
    • 2002
  • Turbulent flows around two-dimensional wing sections in ground effect are analysed by incompressible RANS equations and a finite difference method. The Baldwin-Lomax algebraic turbulence model is used to simulate high Reynolds number flows. The main purpose of this study is to clarify the two-dimensional ground effect and its flow characteristics due to different ground boundary conditions, i.e., moving and fixed bottom boundary. As a first step, to validate the present numerical code, the computational result of Clark-Y(t/C 11.7%) is compared with published numerical results and experimental data. Then, NACA4412 section in ground effect is calculated for various ground clearances with two bottom boundary conditions. According to the computational results, the difference in the lift and moment simulated with the two bottom boundary conditions is negligible, but the drag force simulated by the fixed bottom is to some extent smaller than that by the moving bottom. Therefore, it can be concluded that the drag force measured in a wind tunnel with the fixed bottom could be smaller than that with the moving bottom.

Elastic solutions for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface

  • Wang, Ling;Zou, Jin-Feng;Yang, Tao;Wang, Feng
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.201-215
    • /
    • 2019
  • A new approach of analyzing the displacements and stress of the surrounding rock for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface is investigated in this study. In the proposed approach, by using a virtual image technique, the shear stress of the vertical ground surface is revised to be zero, and elastic solutions of the surrounding rock are obtained before stress revision. To revise the vertical normal stress and shear stress of horizontal ground surface generated by the combined action of the actual and image sinks, the harmonic functions and corresponding stress function solutions were adopted. Based on the Boussinesq's solutions and integral method, the horizontal normal stress of the vertical ground surface is revised to be zero. Based on the linear superposition principle, the final solution of the displacements and stress were proposed by superimposing the solutions obtained by the virtual image technique and the stress revision on the horizontal and vertical ground surfaces. Furthermore, the ground settlements and lateral displacements of the horizontal and vertical ground surfaces are derived by the proposed approach. The proposed approach was well verified by comparing with the numerical method. The discussion based on the proposed approach in the manuscript shows that smaller horizontal ground settlements will be induced by lower tunnel buried depths and smaller limb distances. The proposed approach for the displacement and stress of the surrounding rocks can provide some practical information about the surrounding rock stability analysis of shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface.

Ground Penetrating Radar Imaging of a Circular Patterned Ground near King Sejong Station, Antarctica

  • Kim, Kwansoo;Ju, Hyeontae;Lee, Joohan;Chung, Changhyun;Kim, Hyoungkwon;Lee, Sunjoong;Kim, Jisoo
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.257-267
    • /
    • 2021
  • Constraints on the structure and composition of the active layer are important for understanding permafrost evolution. Soil convection owing to repeated moisture-induced freeze-thaw cycles within the active layer promotes the formation of self-organized patterned ground. Here we present the results of ground penetrating radar (GPR) surveys across a selected sorted circle near King Sejong Station, Antarctica, to better delineate the active layer and its relation to the observed patterned ground structure. We acquire GPR data in both bistatic mode (common mid-points) for precise velocity constraints and monostatic mode (common-offset) for subsurface imaging. Reflections are derived from the active layer-permafrost boundary, organic layer-weathered soil boundary within the active layer, and frozen rock-fracture-filled ice boundary within the permafrost. The base of the imaged sorted circle possesses a convex-down shape in the central silty zone, which is typical for the pattern associated with convection-like soil motion within the active layer. The boundary between the central fine-silty domain and coarse-grained stone border is effectively identified in a radar amplitude contour at the assumed active layer depth, and is further examined in the frequency spectra of the near- and far-offset traces. The far-offset traces and the traces from the lower frequency components dominant on the far-offset traces would be associated with rapid absorption of higher frequency radiowave due to the voids in gravel-rich zone. The presented correlation strategies for analyzing very shallow, thin-layered GPR reflection data can potentially be applied to the various types of patterned ground, particularly for acquiring time-lapse imaging, when electric resistivity tomography is incorporated into the analysis.

Numerical modeling of Atmosphere - Surface interaction considering Vegetation Canopy (식물계를 고려한 지표-대기 상호작용의 수치모의)

  • 이화운;이순환
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.17-29
    • /
    • 1994
  • An one dimensional atmosphere-vegetation interaction model is developed to discuss of the effect of vegetation on heat flux in mesoscale planetary boundary layer. The canopy model was a coupled system of three balance equations of energy, moisture at ground surface and energy state of canopy with three independent variables of $T_f$(foliage temperature), $T_g$(ground temperature) and $q_g$(ground specific humidity). The model was verified by comparative study with OSUID(Oregon State University One Dimensional Model) proved in HYPEX-MOBHLY experiment. As the result, both vegetation and soil characteristics can be emphasized as an important factor iii the analysis of heat flux in the boundary layer. From the numerical experiments, following heat flux characteristics are clearly founded simulation. The larger shielding factor(vegetation) increase of $T_f$ while decrease $T_g$. because vegetation cut solar radiation to ground. Vegetation, the increase of roughness and resistance, increase of sensible heat flux in foliage while decrease the latent heat flux in the foliage.

  • PDF