• Title/Summary/Keyword: haunch brace

Search Result 3, Processing Time 0.017 seconds

Cyclic testing of steel I-beams reinforced with GFRP

  • Egilmez, O. Ozgur;Yormaz, Doruk
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.93-114
    • /
    • 2011
  • Flange and web local buckling in beam plastic hinge regions of steel moment frames can prevent beam-column connections from achieving adequate plastic rotations under earthquake-induced forces. This threat is especially valid for existing steel moment frame buildings with beams that lack adequate flange/web slenderness ratios. As the use of fiber reinforced polymers (FRP) have increased in strengthening and repair of steel members in recent years, using FRPs in stabilizing local instabilities have also attracted attention. Previous computational studies have shown that longitudinally oriented glass FRP (GFRP) strips may serve to moderately brace beam flanges against the occurrence of local buckling during plastic hinging. An experimental study was conducted at Izmir Institute of Technology investigating the effects of GFRP reinforcement on local buckling behavior of existing steel I-beams with flange slenderness ratios (FSR) exceeding the slenderness limits set forth in current seismic design specifications and modified by a bottom flange triangular welded haunch. Four European HE400AA steel beams with a depth/width ratio of 1.26 and FSR of 11.4 were cyclically loaded up to 4% rotation in a cantilever beam test set-up. Both bare beams and beams with GFRP sheets were tested in order to investigate the contribution of GFRP sheets in mitigating local flange buckling. Different configurations of GFRP sheets were considered. The tests have shown that GFRP reinforcement can moderately mitigate inelastic flange local buckling.

Stress concentration factors test of reinforced concrete-filled tubular Y-joints under in-plane bending

  • Yang, Jun-fen;Yang, Chao;Su, Ming-zhou;Lian, Ming
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.203-216
    • /
    • 2016
  • To study the stress concentration factors (SCFs) of concrete-filled tubular Y-joints subject to in-plane bending, experiments were used to investigate the hot spot stress distribution along the intersection between chord and brace. Three concrete-filled tubular chords forming Y-joints were tested with different reinforcing components, including doubler-plate, sleeve, and haunch-plate reinforcement. In addition, an unreinforced joint was also tested for comparison. Test results indicate that the three different forms of reinforcement effectively reduce the peak SCFs compared with the unreinforced joint. The current research suggests that the linear extrapolation method can be used for chords, whereas the quadratic extrapolation method must be used for braces. The SCF is effectively reduced and more evenly distributed when the value of the axial compression ratio in the chord is increased. Furthermore, the SCFs obtained from the test results were compared to predictions from some well-established SCF equations. Generally, the predictions from those equations are very consistent for braces, but very conservative for concrete-filled chords.

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Song Wang;Ke Jiang
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.203-218
    • /
    • 2024
  • Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.