• Title/Summary/Keyword: heave

Search Result 407, Processing Time 0.027 seconds

Evaluation of Frost Heave Prediction and Frost Susceptibility in Sample using JGS Test Method (일본 동상성판정기준을 적용한 시료의 동상예측 및 동상성 평가)

  • Kim, Young-Chin;Hong, Seung-Seo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.926-931
    • /
    • 2008
  • This paper show two different standardized test methods(Japanese Geotechnical Society; JGS 2003). One test is a "Test Method for Frost Heave Prediction Test, JGS 0171-2003", and the other test is a "Test Method for Frost Susceptibility, JGS 0172-2003". The purpose of this test is to obtain the freezing rate(freezing speed), frost heave ratio(heave to sample height), frost heave rate(heaving speed), and other parameters to be used for frost heave prediction and determine the frost susceptibility by freezing test with water intake. This method shall be used to predict the frost heave in frozen ground and evaluate the frost susceptibility of natural and replacement materials.

  • PDF

Experimental assessment of the effect of frozen fringe thickness on frost heave

  • Jin, Hyun Woo;Lee, Jangguen;Ryu, Byun Hyun;Shin, Yunsup;Jang, Young-Eun
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.193-199
    • /
    • 2019
  • A frozen fringe plays a key role in frost heave development in soils. Previous studies have focused on the physical and mechanical properties of the frozen fringe, such as overall hydraulic conductivity, water content and pore pressure. It has been proposed that the thickness of the frozen fringe controls frost heave behavior, but this effect has not been thoroughly evaluated. This study used a temperature-controllable cell to investigate the impact of frozen fringe thickness on the characteristics of frost heave. A series of laboratory tests was performed with various temperature boundary conditions and specimen heights, revealing that: (1) the amount and rate of development of frost heave are dependent on the frozen fringe thickness; (2) the thicker the frozen fringe, the thinner the resulting ice lens; and (3) care must be taken when using the frost heave ratio to characterize frost heave and evaluate frost susceptibility because the frost heave ratio is not a normalized factor but a specimen height-dependent factor.

Hydrodynamic Response of Spar with Single and Double Heave Plates in Regular Waves

  • Sudhakar, S.;Nallayarasu, S.
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.188-208
    • /
    • 2013
  • The motion response of floating structures should be adequately low to permit the operation of rigid risers along with dry well heads. Though Spar platforms have low heave responses under lower sea state, could become unacceptable in near resonance region of wave periods. Hence the hydrodynamic response, heave in particular, must be examined to ensure that it is minimized. To reduce heave motions, external damping devices are introduced and one such effective damping device is heave plate. Addition of heave plate can provide additional viscous damping and additional added mass in the heave direction which influence the heave motion. The present study focuses on the influence of heave plate on the hydrodynamic responses of Classic Spar in regular waves. The experimental investigation has been carried out on a 1:100 scale model of Spar with single and double heave plates in regular waves. Numerical investigation has been carried out to derive the hydrodynamic responses using ANSYS AQWA. The experimental results were compared with those obtained from numerical simulation and found to be in good agreement. The influence of disk diameter ratio, wave steepness, pretension in the mooring line and relative spacing between the plates on the hydrodynamic responses of Spar are evaluated and presented.

Hydrodynamic Responses of Spar Hull with Single and Double Heave Plates in Random Waves

  • Sudhakar, S.;Nallayarasu, S.
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • Heave plates have been widely used to enhance viscous damping and thus reduces the heave response of Spar platforms. Single heave plate attached to the keel of the Spar has been reported in literature (Tao and Cai 2004). The effect of double heave plates on hydrodynamic response in random waves has been investigated in this study. The influence of relative spacing $L_d/D_d$ ($D_d$-the diameter of the heave plate) on the hydrodynamic response in random waves has been simulated in wave basin experiments and numerical model. The experimental investigation has been carried out using 1:100 scale model of Spar with double heave plates in random waves for different relative spacing and varying wave period. The influence of relative spacing between the heave plates on the motion responses of Spar are evaluated and presented. Numerical investigation has been carried out to investigate effect of relative spacing on hydrodynamic characteristics such as heave added mass and hydrodynamic responses. The measured results were compared with those obtained from numerical simulation and found to be in good agreement. Experimental and numerical simulation shows that the damping coefficient and added mass does not increase for relative spacing of 0.4 and the effect greater than relative spacing on significant heave response is insignificant.

A Numerical Study on the Appendage Shape for a Heave Motion Reduction of Floating Cylindrical Structure (원통형 부유체의 heave운동 저감을 위한 부가물 형상에 관한 수치적 연구)

  • Lim, Geun-Nam;Kim, Sang-Hyun;Kim, Dong-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.449-456
    • /
    • 2015
  • In this paper, attaching various damping plates to the cylindrical structure and performing numerical simulations try to study heave RAO and natural period for cylinder. Most of all, we identified heave RAO of the cylinder by simulations of the motion and the wave. And then, we performed numerical simulations by changing the size and shape of heave damping plate attached to the cylinder and reviewed the heave RAO and natural period for each case. The conclusions of this research are as follows. Firstly, the natural period of cylindrical structure is increased by attached to the cylinder with heave damping plate and the heave RAO of cylindrical structure is reduced in the peak period for incident wave by attached to the cylinder with from the size of 1.30D for heave damping plate. Secondly, circular plate has long natural period than Y-type plate in all of these sections. Finally, the motion response spectrum considering the marine environment of Piranema field was identified as the heave motion of cylindrical structure is remarkably reduced with both circular plate and Y-type plate in the peak period for incident wave.

Experimental Assessment and Specimen Height Effect in Frost Heave Testing Apparatus (동상시험장비의 실험적 검증 및 시료크기의 영향에 관한 연구)

  • Jin, Hyunwoo;Ryu, Byunghyun;Lee, Jangguen
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Frost heave is one of the representative engineering characteristics in cold regions. In South Korea, which is located in seasonal frost area, structural damage caused by frost heave and thaw happens and the need for research on the frost heave is increasing. In this paper, newly developed transparent temperature-controllable cell is used to focus on the frost heave. Frost susceptible artificial soil is used to analyze water intake rate which is one of the important factors in frost susceptibility criteria. Frost heave rate and water intake rate have similar behavior after heave by freezing of pore water converges. O-ring installed in the upper pedestal to measure water intake rate generates side friction between the inner wall of the freezing cell and O-ring, thereby hindering frost heave. Therefore, the frost susceptibility criteria using the water intake rate is not reliable. It is appropriate to use frost heave rate which has similar behavior with water intake rate. Frost heave tests were performed under two different specimen heights. Overburden pressure, temperature gradient and dry unit weight were set under similar state. Based on laboratory testing results, frost heave is independent on the specimen height.

Development of experimental apparatus to evaluate frost heave and pressure (토사의 동상량 및 동상력 측정을 위한 실내 실험장치 개발)

  • Ko, Sung-Gyu;Choi, Chang-Ho;Chae, Jong-Gil
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.131-137
    • /
    • 2010
  • `Frost heave' is volumetric extension behavior of soil due to freezing. It could have a bad effect to foundations of infrastructures like building, road, railroad and bridge. Therefore, it is considered as a primary design parameter with 'adfreeze bond' and 'creep deformation' for foundation design in cold region. In some countries, studies for analyzing frost heave in many ways have being performed, however, only a few studies for evaluating frost susceptibility of soils by measuring frost heave rate of frozen soils in Korea. For analyzing frost heave as a foundation design parameter, both frost heaving rate and heaving pressure are should be addressed in study. Hence, in this study, development of experimental apparatus to evaluate frost heave and pressure is suggested.

  • PDF

Numerical Analysis of Offshore Installation Using a Floating Crane with Heave Compensator in Waves (Heave Compensator를 고려한 파랑 중 해상 크레인 설치작업 수치해석)

  • Nam, Bo-Woo;Hong, Sa-Young;Kim, Jong-Wook;Lee, Dong-Yeop
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.70-77
    • /
    • 2012
  • In this study, a numerical analysis of offshore installation using a floating crane with heave compensator is carried out in time domain. The motion analysis of crane vessels is based on floating body dynamics using convolution integral and the crane wire is treated as simple spring. The lifted structure is assumed as a rigid body with 3 degree-of-freedom translational motion. The heave compensator is numerically modelled by the generalized spring-damper system. Firstly, forced motion simulations of crane wire system are carried out to figure out the basic principle of heave compensator. The transfer function of crane wire system is obtained and effective wave period of heave compensator are found. Then, coupled analysis of crane vessel, crane wire, and lifted structure are performed in regular and irregular sea conditions. Two different crane vessels and two lifted structures (suction pile and manifold) are considered in this study. Through a series of numerical calculations, the effective zone of heave compensator is investigated with respect to wave period and crane wire length.

Resonant response of spar-type floating platform in coupled heave and pitch motion

  • Choi, E.Y.;Cho, J.R.;Jeong, W.B.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.513-521
    • /
    • 2018
  • In this paper, the resonance response of spar-type floating platform in coupled heave and pitch motion is investigated using a CPU time-effective numerical method. A coupled nonlinear 2-DOF equation of motion is derived based on the potential wave theory and the rigid-body hydrodynamics. The transient responses are solved by the fourth-order Runge-Kutta (RK4) method and transformed to the frequency responses by the digital Fourier transform (DFT), and the first-order approximation of heave response is analytically derived. Through the numerical experiments, the theoretical derivation and the numerical formulation are verified from the comparison with the commercial software AQWA. And, the frequencies of resonance arising from the nonlinear coupling between heave and pitch motions are investigated and justified from the comparison with the analytically derived first-order approximation of heave response.