• Title/Summary/Keyword: heavy rainfall events

Search Result 164, Processing Time 0.026 seconds

Extreme Rainfall and Flood related to Tropical Moisture Exports Related Extreme in Korea

  • Uranchimeg, Sumiya;Kwon, Hyun-Han;Kim, Kyung-Wook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.170-170
    • /
    • 2018
  • In some case studies, the heavy precipitation events and rapid cyclogenesis in the extratropics can be caused by moist and warm tropical air masses. Tropical Moisture Exports (TME) correspond to the meridional transport of moist air masses, primarily born in tropical oceanic areas, to higher latitudes; and are closely related to flood events, especially in the mid-latitudes. The TME for the region of interest is mostly estimated by the back tracking approach using Lagrangian Analysis Tools (LAGRANTO) from ECMWF Re-Analysis (ERA) data. In this study, we aim to estimate the TME that are related to rainfall in Korea. The major moisture sources of the TME that contribute to heavy rainfall and extreme floods in Korea are identified. The TME is found to have significant connection with extreme events in Korea such as heavy rainfall and extreme flood events. The results show the most of the moisture sources comes from the west Pacific during the warm half of the year and it contributes significantly to the annual TME and is linked to the East Asian monsoon.

  • PDF

Application of Images and Data of Satellite to a Conceptual Model for Heavy Rainfall Analysis (호우사례 분석을 위한 개념모델 구성에 위성영상과 위성자료의 활용 연구)

  • Lee, Kwang-Jae;Heo, Ki-Young;Suh, Ae-Sook;Park, Jong-Seo;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.131-151
    • /
    • 2010
  • This study establishes a conceptual model to analyze heavy rainfall events in Korea using multi-functional transport satellite-1R satellite images. Three heavy rainfall episodes in two major synoptic types, such as synoptic low (SL) type and synoptic flow convergence (SC) type, are analyzed through a conceptual model procedure which proceeds on two steps: 1) conveyer belt model analysis to detect convective area, and 2) cloud top temperature analysis from black body temperature (TBB) data to distinguish convective cloud from stratiform cloud, and eventually estimate heavy rainfall area and intensity. Major synoptic patterns causing heavy rainfall are Changma, synoptic low approach, upper level low in the SL type, and upper level low, indirect effect of typhoon, convergence of tropical air in the SC type. The relationship between rainfall and TBBs in overall well resolved areas of heavy rainfall. The SC type tended to underestimate the intensity of heavy rainfall, but the analysis with the use of water vapor channel has improved the performance. The conceptual model improved a concrete utilization of images and data of satellite, as summarizing characteristics of major synoptic type causing heavy rainfall and composing an algorism to assess the area and intensity of heavy rainfall. The further assessment with various cases is required for the operational use.

Applicability of a Space-time Rainfall Downscaling Algorithm Based on Multifractal Framework in Modeling Heavy Rainfall Events in Korean Peninsula (강우의 시공간적 멀티프랙탈 특성에 기반을 둔 강우다운스케일링 기법의 한반도 호우사상에 대한 적용성 평가)

  • Lee, Dongryul;Lee, Jinsoo;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.839-852
    • /
    • 2014
  • This study analyzed the applicability of a rainfall downscaling algorithm in space-time multifractal framework (RDSTMF) in Korean Peninsula. To achieve this purpose, the 8 heavy rainfall events that occurred in Korea during the period between 2008 and 2012 were analyzed using the radar rainfall imagery. The result of the analysis indicated that there is a strong tendency of the multifractality for all 8 heavy rainfall events. Based on the multifractal exponents obtained from the analysis, the parameters of the RDSTMF were obtained and the relationship between the average intensity of the rainfall events and the parameters of the RDSTMF was developed. Based on this relationship, the synthetic space-time rainfall fields were generated using the RDSTMF. Then, the generated synthetic space-time rainfall fields were compared to the observation. The result of the comparison indicated that the RDSTMF can accurately reproduce the multifractal exponents of the observed rainfall field up to 3rd order and the cumulative density function of the observed space-time rainfall field with a reasoable accuracy.

Assessment of weather events impacts on forage production trend of sorghum-sudangrass hybrid

  • Moonju Kim;Kyungil Sung
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.792-803
    • /
    • 2023
  • This study aimed to assess the impact of weather events on the sorghum-sudangrass hybrid (Sorghum bicolor L.) cultivar production trend in the central inland region of Korea during the monsoon season, using time series analysis. The sorghum-sudangrass production data collected between 1988 and 2013 were compiled along with the production year's weather data. The growing degree days (GDD), accumulated rainfall, and sunshine duration were used to assess their impacts on forage production (kg/ha) trend. Conversely, GDD and accumulated rainfall had positive and negative effects on the trend of forage production, respectively. Meanwhile, weather events such as heavy rainfall and typhoon were also collected based on weather warnings as weather events in the Korean monsoon season. The impact of weather events did not affect forage production, even with the increasing frequency and intensity of heavy rainfall. Therefore, the trend of forage production for the sorghum-sudangrass hybrid was forecasted to slightly increase until 2045. The predicted forage production in 2045 will be 14,926 ± 6,657 kg/ha. It is likely that the damage by heavy rainfall and typhoons can be reduced through more frequent harvest against short-term single damage and a deeper extension of the root system against soil erosion and lodging. Therefore, in an environment that is rapidly changing due to climate change and extreme/abnormal weather, the cultivation of the sorghum-sudangrass hybrid would be advantageous in securing stable and robust forage production. Through this study, we propose the cultivation of sorghum-sudangrass hybrid as one of the alternative summer forage options to achieve stable forage production during the dynamically changing monsoon, in spite of rather lower nutrient value than that of maize (Zea mays L.).

A Study on Variability of Extreme Precipitation by Basin in South Korea (한국의 유역별 호우변화에 관한 연구)

  • Lee, Seung-Ho;Kim, Eun-Kyung;Heo, In-Hye
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.5
    • /
    • pp.505-520
    • /
    • 2011
  • This study is aimed to examine the change on extreme precipitation events in South Korea. The country is divided into six basins, and seven extreme precipitation indices-related to heavy rainfall are analyzed at sixty weather stations. The increasing trend in amount of heavy rainfall is more stable than that in days of heavy rainfall. The increasing trend is the most stable when days of rainfall are more than 50 mm, or rainfall is over the 95th percentile. The precipitation indices-related to heavy rainfall was mostly increasing during analysis period. Especially, basins of the Han river, the upper Nakdong river, and the Eastern coast show significantly increasing trends compared to the other basins. However, the increasing trends of the Geum river and the Seomjin river are not statistically significant. Heavy rainfall events had stably increased in the Han and the Nakdong rivers since the mid-1970s. However, the number of stably increasing regions has decreased since the mid-2000s. It means that the frequency and intensity of the recent heavy rainfall become more irregular.

  • PDF

A Study on the Characteristics of the Heavy Rainfall Events in Honam District along the Border of mT Airmass

  • Yang, Se-Hwan;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.5 no.4
    • /
    • pp.220-228
    • /
    • 2012
  • District of Korea affected by westerly wind and heavy rainfall is predominantly distributed in the west and south of Honam district. So, this study is becoming a necessity. In this study, it is investigated that the characteristics of heavy rainfall occurred frequently in Honam district along the border of mT airmass after the end of rainy season due to atmospheric instability, lower (850 hPa) convergence and topographic effect. Our results show that heavy rainfall occurred in Honam district along the border of mT airmass results from the appropriate mechanism of the unstable vertical structure and moisture flux in the expansion and contraction of the border of mT airmass. All things considered, the improvement of the predictability of heavy rainfall occurred in Honam district along the border of mT airmass could be possible by the generalization of the results of this study.

The Characteristics of Heavy Rainfall over the Korean Peninsular - Case Studies of Heavy Rainfall Events during the On- and Off- Changma Season- (장마기와 장마 후의 한반도 집중호우 특성 사례분석)

  • Chung, Hyo-Sang;Chung, Yun-Ang;Kim, Chang-Mo;Ryu, Chan-Su
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1511-1521
    • /
    • 2012
  • An attempt is made to analyse characteristic features of heavy rainfalls which occur at the metropolitan area of the Korean peninsular the on- and off- Changma season. For this, two representative heavy rainfall episodes are selected; one is the on-Changma season wherein a torrential rain episode happened at Goyang city on 12 July 2006, and the other is the off-Changma season, a heavy rainfall event in Seoul on 21 September 2006. Both recorded considerable amounts of precipitation, over 250mm in a half-day, which greatly exceeded the amount expected by numerical prediction models at those times, and caused great damage to property and life in the affected area. Similarities in the characteristics of both episodes were shown by; the location of upper-level jet streak and divergence fields of the upper wind over heavy rainfall areas, significantly high equivalent potential temperatures in the low atmospheric layer due to the entrainment of hot and humid air by the low-level jet, and the existence of very dry air and cold air pool in the middle layer of the atmosphere at the peak time of the rainfall events. Among them, differences in dynamic features of the low-level jet and the position of rainfall area along the low-level jet are remarkable.

The Recent Increase in the Heavy Rainfall Events in August over the Korean Peninsula

  • Cha, Eun-Jeong;Kimoto, Masahide;Lee, Eun-Jeong;Jhun, Jong-Ghap
    • Journal of the Korean earth science society
    • /
    • v.28 no.5
    • /
    • pp.585-597
    • /
    • 2007
  • The characteristics of the rainfall events on the Korean peninsula have been investigated by means of regional and global observational data collected from 1954 to 2004 with an emphasis on extreme cases $80\;mm\;day^{-1}$. According to our analysis, long-term annual rainfall anomalies show an increasing trend. This trend is pronounced in the month of August, when both the amount of monthly rainfall and the frequency of extreme events increase significantly. Composite maps on August during the 8 wet years reveal warm SST anomalies over the eastern Philippine Sea which are associated with enhanced convection and vertical motion and intensified positive SLP over central Eurasia during August. The rainfall pattern suggests that the most significant increase in moisture supply over the southern parts of China and Korea in August is associated with positive SLP changes over Eurasia and negative SLP changes over the subtropical western Pacific off the east coast of south China. The frequent generation of typhoons over the warm eastern Philippine Sea and their tracks appear to influence the extreme rainfall events in Korea during the month of August. The typhoons in August mainly passed the western coast of Korea, resulting in the frequent occurrence of extreme rainfall events in this region. Furthermore, anomalous cyclonic circulations over the eastern Philippine Sea also promoted the generation of tropical cyclones. The position of pressure systems - positive SLP over Eurasia and negative SLP over the subtropical Pacific - in turn provided a pathway for typhoons. The moisture is then effectively transported further north toward Korea and east toward the southern parts of China during the extreme rainfall period.

Horizontal Distributions of Salinity and the Concentrations of DIN and DIP After Heavy Rainfall Events in Areas of Cochlodinium Polykrikoides Bloom Occurrence (Cochlodinium Polykrikoides 적조가 발생하는 해역에서 호우에 의한 담수 유입 범위와 질소, 인의 농도변동)

  • Lee, Young-Sik;Lim, Wol-Ae;Lee, Sam-Geun
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1119-1125
    • /
    • 2007
  • We examined the horizontal distribution of salinity and the concentrations of DIN and DIP after heavy rain-fall events in coastal areas of South Korea from Yeoja Bay to Narodo and from Gwangyang Bay to Geomodo to determine whether fresh water actually flows into areas of Cochlodinium polykrikoides red tides and to observe its effect on the growth of this organism after heavy rainfall. Following heavy rainfall (155 mm) in the Yeosu and Suncheon regions, the average salinity was 21 and 29 psu at Yeoja Bay and in the coastal waters of Narodo, respectively. After 126 mm of rainfall, the values were 19 and 25 psu in the coastal waters of Yeosu and Geomodo, respectively. This may have been caused by an influx of fresh water, after the rainfall event, into the open sea coastal areas around Narodo and Geomodo from the Dong and Seomjin Rivers, which are about 3540 km away. After the rainfall, the concentrations of $NH_4-N,\;NO_2-N$, and $PO_4-P$ were slightly increased; however, the concentration of $NO_3-N$ was greatly increased and diffused throughout the coastal areas of Narodo and Geomodo, which frequently experience C. polykrikoides blooms. The influence of $NH_4-N,\;NO_2-N$, and $PO_4-P$ on the occurrence of C. polykrikoidesred tides in coastal areas around Narodo and Geomodo after heavy rainfall does not appear to be great. Instead, the occurrence C. polykrikoides red tides in the coastal areas of Narodo and Geomodo seems to be facilitated by $NO_3-N$.

Adjustment of Radar Precipitation Estimation Based on the Local Gauge Correction Method (국지 우량계 보정 방법을 이용한 레이더 강우 조정)

  • Kim, Kwang-Ho;Lee, Gyuwon;Kang, Dong-Hwan;Kwon, Byung-Hyuk;Han, Kun-Yeun
    • Journal of the Korean earth science society
    • /
    • v.35 no.2
    • /
    • pp.115-130
    • /
    • 2014
  • The growing possibility of the disaster due to severe weather calls for disaster prevention and water management measures in South Korea. In order to prevent a localized heavy rain from occurring, the rainfall must be observed and predicted quantitatively. In this study, we developed an adjustment algorithm to estimate the radar precipitation applying to the local gauge correction (LGC) method which uses geostatistical effective radius of errors of the radar precipitation. The effective radius was determined from the errors of radar rainfall using geostatistical method, and we adjusted radar precipitation for four heavy rainfall events based on the LGC method. Errors were decreased by about 40% and 60% in adjusted hourly rainfall accumulation and adjusted total rainfall accumulation for four heavy rainfall events, respectively. To estimate radar precipitation for localized heavy rain events in summer, therefore, we believe that it was appropriate for this study to use an adjustment algorithm, developed herein.