• Title/Summary/Keyword: human SW480 cells

Search Result 41, Processing Time 0.022 seconds

Anti-Cancer Activity of Lonicera Caerulea Against Human Colorectal Cancer Cells (댕댕이나무의 대장암세포에 대한 항암활성)

  • Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.89-89
    • /
    • 2020
  • In this study, we evaluated the effect of the extracts from Lonicera caerulea leaves (LCLE), branches (LCBE) and fruits (LCFE) on the cell growth and migration in human colorectal cancer cells, HCT116 and SW480 cells. LCLE and LCBE dose- and time-dependently inhibited the proliferation of HCT116 and SW480 cells. However, LCFE did not affect the proliferation of HCT116 and SW480 cells. In addition, LCLE and LCBE dramatically cell migration and wound healing in HCT116 cells. LCLE and LCBE decreased β-catenin protein level but not mRNA level in HCT116 and SW480 cells. Furthermore, LCLE decreased TCF4 level in both protein and mRNA level in HCT116 and SW480 cells. However, LCBE decreased TCF4 protein level but not mRNA level in HCT116 and SW480 cells. Based on these findings, LCLE and LCBE may inhibit the cell proliferation and migration through blocking Wnt signaling activation in human colorectal cancer cells. Therefore, LCLE and LCBE may be a potential candidate for the development of chemopreventive or therapeutic agents for human colorectal cancer.

  • PDF

Effects of Curcumin on Apoptosis in SW480 Human Colon Cancer Cell Line (Curcumin이 인체대장암세포주인 SW480 cell에서 세포사멸에 미치는 영향)

  • 최옥숙;김우경
    • Journal of Nutrition and Health
    • /
    • v.37 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • Curcumin, a natural compound extracted from rhizomes of Curcuma longa, has been shown to possess potent anti-inflammatory and anti-tumor activity. The mechanism by which curcumin initiates apoptosis remains poorly understood. In this study, we investigated the effects of curcumin on caspase-3 activity and protein expression of procaspase-3, Bcl-2, Bax, total Akt and phosphorylated Akt in SW480 human colon cancer cell. We cultured SW480 cells in the presence of various concentrations (0, 10, 20 or 30 uM) of curcumin. Curcumin inhibited colon cancer cell growth in a dose-dependent manner (p < 0.05). Caspase-3 activity was significantly increased dose-dependently in cells treated with curcumin (p < 0.05), concisely procaspase-3 expression was significantly decreased. Bcl-2 levels were decreased dose-dependently in cells treated with curcumin (p < 0.05), but Ben remained unchanged. In addition, phosphorylated Akt levels and total Akt levels were markedly lower in cells treated with 20 uM of curcumin treatment (p < 0.05), In conclusion, we have shown that curcumin inhibits cell growth and induces apoptosis in SW480 human colon cancer cell lines via Akt signal pathway.

Inhibitory Activity of Lonicera caerulea Against Cell Proliferation in Human Colorectal Cancer Cells (댕댕이나무(Lonicera caerulea)의 대장암세포 생육억제 활성)

  • An, Mi-Yun;Eo, Hyun Ji;Son, Ho-Jun;Park, Gwang Hun;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • In this study, we evaluated the effect of the extracts from Lonicera caerulea leaves (LCLE), branches (LCBE) and fruits (LCFE) on the cell growth and migration in human colorectal cancer cells, HCT116 and SW480 cells. LCLE and LCBE dose- and time-dependently inhibited the proliferation of HCT116 and SW480 cells. However, LCFE did not affect the proliferation of HCT116 and SW480 cells. In addition, LCLE and LCBE dramatically cell migration and wound healing in HCT116 cells. LCLE and LCBE decreased β-catenin protein level but not mRNA level in HCT116 and SW480 cells. Furthermore, LCLE decreased TCF4 level in both protein and mRNA level in HCT116 and SW480 cells. However, LCBE decreased TCF4 protein level but not mRNA level in HCT116 and SW480 cells. Based on these findings, LCLE and LCBE may inhibit the cell proliferation and migration through blocking Wnt signaling activation in human colorectal cancer cells. Therefore, LCLE and LCBE may be a potential candidate for the development of chemopreventive or therapeutic agents for human colorectal cancer.

Red Ginseng Extract Reduced Metastasis of Colon Cancer Cells In Vitro and In Vivo

  • Seo, Eun-Young;Kim, Woo-Kyoung
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.315-324
    • /
    • 2011
  • This study investigated the effect of red ginseng extract on metastasis of colon cancer cells in vitro and in vivo. Wound healing migration, cell motility, invasion, and activity, protein expression, and mRNA expression of matrix metalloproteinases (MMPs) were examined in SW480 human colon cancer cells. SW480 cells were cultured with or without $100{\mu}g/L$ PMA in the absence or presence of various concentrations (100, 200, or $300{\mu}g/mL$) of red ginseng extract. Red ginseng extract treatment caused signifi cant suppression of cell motility and invasion (p<0.05) in SW480 cells. Red ginseng extract inhibited MMP-2 and MMP-9 activity and their protein and mRNA expression in a dose-dependent manner (p<0.05) in SW480 cells. For experimental metastasis, BALB/c mice were injected intravenously with CT-26 mouse colon cancer cells in the tail vein, and were orally administered various concentrations (0, 75, 150, or 300 mg/kg body weight) of red ginseng extract for 3 weeks. Numbers of pulmonary nodules were signifi cantly decreased in mice that were fed red ginseng extract (p<0.05). Plasma MMP-2 and MMP-9 activity signifi cantly decreased in response to treatment with red ginseng extract in mice (p<0.05). These data suggest that red ginseng extract may be useful for prevention of cancer invasion and metastasis through inhibition of MMP-2 and MMP-9 pathways.

Anti-cancer Effects of Cultivated Orostachys japonicus on Human Colon Cancer Cell Line SW480 (인체대장암세포주 SW480에 대한 재배 와송의 항암효과 연구)

  • Park, Sookyoung;Won, Jinyoung;Park, Kanghui;Hong, Yonggeun
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.819-826
    • /
    • 2018
  • Orostachys japonicus (OJ) is a medicinal herb with immunoregulatory, anti-aging, anti-oxidative, and many other therapeutic properties. The purpose of this study was to elucidate the anti-cancer property of cultivated OJ. SW480 cell viability was significantly reduced by cumulative exposure to OJ extract. We also observed inhibitory effects of OJ after 72 hr through the growth and migration of SW480 cells using scratch assay. SW480 cells in OJ-free medium began to move into the scratch site at 24 hr; however, cells in medium containing OJ did not migrate into the scratch site until 48 hr. Male C57BL/6 mice (4 weeks old) were orally administered OJ extract for 31 days before injection of SW480 cells. At 7, 14, and 28 days after subcutaneous injection of SW480 cells, tumor weight and volume were analyzed. The body weight of the OJ-treated group was continuously increased during administration of the OJ extract relative to the control group. Injection of SW480 cells caused a reduction in body weight in all groups; however, the OJ-treated group exhibited a significant increase in body weight after 14 days. Tumor weight and volume were lower in the OJ-treated group than in the control group after 28 days. Although these results suggest that OJ suppresses the proliferation and migration of human colon cancer cells, additional studies are required to provide preclinical evidence before launching clinical trials evaluating OJ as an anti-cancer biohealth product.

Effects of Conjugated Linoleic Acid (CLA) on Matrix Metalloproteinase (MMP) Activity and Cell Motility in Human Colon Cancer Cell Lines (Conjugated Linoleic Acid (CLA)가 인체 대장암 세포주에서 Matrix Metalloproteinase (MMP) 활성과 세포이동성에 미치는 영향)

  • 설소미;방명희;최옥숙;윤정한;김우경
    • Journal of Nutrition and Health
    • /
    • v.36 no.3
    • /
    • pp.280-286
    • /
    • 2003
  • Conjugated linoleic acid (CLA) consists of several geometric isomers of linoleic acid. CLA is found in foods derived from ruminants and exhibits strong anticarcinogenic effects in a variety of animal models. Matrix metalloproteinases (MMPs) play a key role in cancer progression. Specifically, MMP-2 and -9, which hydrolyze the basal membrane type IV collagen, are involved in the initial breakdown of collagen and basement membrane components during tumor growth and invasion. However, the effects of CLA on cancer cell motility and MMP expression and activity are not currently well known. Therefore, the present study examined whether CLA reduces the activity of MMP and cell motility in SW480 and SW620 cells, the human colon cancer cell lines. Gelatin zymography and Western blot analysis revealed that phorbol 12-myristate 13-acetate (PMA) induced the activity and protein expression of Mr 92,000 MMP-9 in both cell lines. To examine whether CLA inhibits the MMP activity, cells were incubated with 100 ngfmL PMA in the presence of various concentrations of CLA. PMA-induced MMP-9 activity was decreased by 20 $\mu$ M CLA in SW480 cells, and by 10 $\mu$ M and 20 $\mu$ M CLA in SW620 cells. Results from the Hoyden chamber assay showed that cell motility was increased by PMA and that PMA-induced cell motility was significantly decreased by 20 $\mu$ M CLA in SW480 cells. These results indicate that CLA may reduce the motility and MMP activity in human colon cancer cells.

Anti-tumorigenic and Invasive Activity of Colon Cancer Cells Transfected with the Retroviral Vector Encoding Tissue Inhibitor of Metalloproteinase-2 (레트로바이러스를 이용한 Tissue Inhibitor of Metalloproteinase-2 유전자 발현이 대장암 세포의 전이 및 종양형성에 미치는 영향)

  • 오일웅;정자영;장석기;이수해;김연수;손여원
    • YAKHAK HOEJI
    • /
    • v.48 no.3
    • /
    • pp.189-196
    • /
    • 2004
  • Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) playa key role in tumor invasion and metastasis. As an inhibitor of MMP-2, TIMP-2 is known to block both the invasive and metastatic behavior of cancer cells, and decrease tumor growth activity. We performed this study to investigate the effects of TIMP-2 over-expression induced by retroviral mediated gene transfer in vitro and in vivo. The human colon cancer cell line SW480 was transfected with the retroviral vector encoding TIMP-2. The effects of TIMP-2 over-expression were analyzed by invasion assay and gelatinase activity test in colon cancer cells and tumorigencity in nude mice. In evaluation of the transfection efficiency of the retroviral vector encoding TIMP-2 in colon cancer cells, we confirmed up-regulation of TIMP-2 expression dependent on the time of cell culture. In addition, inhibition of MMP-2 expression in SW480/TIMP-2 was shown by gelatin zymography. In the in vitro invasion assay SW480/TIMP-2 inhibited the invasiveness on matrigel coated with collagen. To determine whether TIMP-2 can modulate in vivo tumorigenicity and metastasis, SW480/TIMP-2 cells were injected subcutaneously in nude mice. The tumor mass formation of SW480/TIMP-2 cells in nude mice was markedly decreased compared to nontransfected cancer cells. These results showed that colon cancer cells transfected with the retroviral vector encoding TIMP-2 inhibits the invasiveness in vitro and tumorigenicity in vivo.

Dendrosomal Curcumin Inhibits Metastatic Potential of Human SW480 Colon Cancer Cells through Down-regulation of Claudin1, Zeb1 and Hef1-1 Gene Expression

  • Esmatabadi, Mohammad Javad Dehghan;Farhangi, Baharak;Safari, Zahra;Kazerooni, Hanif;Shirzad, Hadi;Zolghadr, Fatemeh;Sadeghizadeh, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2473-2481
    • /
    • 2015
  • Colon cancer is one of the leading causes of cancer-associated death worldwide. The prognosis for advanced colorectal cancers remains dismal, mainly due to the propensity for metastatic progression. Accordingly, there is a need for effective anti-metastasis therapeutic agents. Since a great body of research has indicated anticancer effects for curcumin, we investigated the effects of dendrosomal curcumin (DNC) on cellular migration and adhesion of human SW480 cells and possible molecular mechanisms involved. Different methods were applied in this study including MTT, Scratch and adhesion assays as well as real-time PCR and transwell chamber assays. Based on the results obtained, DNC inhibits metastasis by decreasing Hef 1, Zeb 1 and Claudin 1 mRNA levels and can reduce SW480 cell proliferation with $IC_{50}$values of 15.9, 11.6 and $7.64{\mu}M$ at 24, 48 and 72h post-treatment. Thus it might be considered as a safe formulation for therapeutic purpose in colorectal cancer cases.

Effects of Rutin on Anti-inflammatory in Adipocyte 3T3-L1 and Colon Cancer Cell SW-480 (지방세포 3T3-L1과 대장암세포 SW-480에서 메밀 성분인 rutin의 항염증 효과)

  • Lee, Suenglim;Seo, Eunyoung
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.1
    • /
    • pp.84-92
    • /
    • 2019
  • Purpose: The objective of this study was conducted to investigate the effects of rutin, buckwheat components on cell growth and anti-inflammation in adipocyte 3T3-L1 and human colon cancer cell SW-480. Methods: We cultured 3T3-L1 adipocyte and SW-480 colon cancer cell to confluence, at which time starvation was induced with SFM for 1 day. Cells were then cultured in medium containing 0, 25, 50, or $100{\mu}mol/mL$ of rutin 3T3-L1 or 0, 10, 20, or $40{\mu}mol/mL$ SW-480. Cell viability was measured using a cell viability kit. In addition, we examined the expression of mRNA related to inflammation. RT-PCR was used to quantity tumor necrosis factor ($TNF-{\alpha}$), interleukin-$1{\beta}$ ($IL-1{\beta}$), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) mRNA levels. Results: Rutin significantly inhibited 3T3-L1 and SW-480 cell proliferation in a dose and time dependent manner. Rutin also significantly reduced the mRNA expression of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ at the highest dose. In addition, rutin treatment caused a significant reduction in COX-2 and iNOS mRNA levels compared to the control group. Conclusion: Overall, our results suggest that rutin has the potential to reduce inflammation, and that these effects are greater during tissue-damaging inflammatory conditions.

Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells

  • Cha, Jae Hoon;Kim, Woo Kyoung;Ha, Ae Wha;Kim, Myung Hwan;Chang, Moon Jeong
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.90-96
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Although the antioxidative effects of lycopene are generally known, the molecular mechanisms underlying the anti-inflammatory properties of lycopene are not fully elucidated. This study aimed to examine the role and mechanism of lycopene as an inhibitor of inflammation. METHODS/MATERIALS: Lipopolysaccharide (LPS)-stimulated SW 480 human colorectal cancer cells were treated with 0, 10, 20, and $30{\mu}M$ lycopene. The MTT assay was performed to determine the effects of lycopene on cell proliferation. Western blotting was performed to observe the expression of inflammation-related proteins, including nuclear factor-kappa B ($NF-{\kappa}B$), inhibitor kappa B ($I{\kappa}B$), mitogen-activated protein kinase (MAPK), extracellular signal-related kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 (p38 MAP kinase). Real-time polymerase chain reaction was performed to investigate the mRNA expression of tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$), interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Concentrations of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) were determined via enzyme-linked immunosorbent assays. RESULTS: In cells treated with lycopene and LPS, the mRNA expression of $TNF-{\alpha}$, $IL-1{\beta}$, IL-6, iNOS, and COX-2 were decreased significantly in a dose-dependent manner (P < 0.05). The concentrations of $PGE_2$ and NO decreased according to the lycopene concentration (P < 0.05). The protein expressions of $NF-{\kappa}B$ and JNK were decreased significantly according to lycopene concertation (P < 0.05). CONCLUSIONS: Lycopene restrains $NF-{\kappa}B$ and JNK activation, which causes inflammation, and suppresses the expression of $TNF-{\alpha}$, $IL-1{\beta}$, IL-6, COX-2, and iNOS in SW480 human colorectal cancer cells.